

ENGINEERING MANUAL MODULAR PLASTIC CONVEYOR BELTS

Table of Contents

Section 1: Intralox Overview	
Belt Construction	
Drive Method	
Belt Selection Process.	
Intralox Services	
Section 2: Product Line.	
Standard Belt Materials	
Special Application Belt Materials	
Belt Material Properties.	
Friction Factors	
Belt Material Compliance.	
General Application Sprocket Material	
Special Application Sprocket Material	20
Sprocket Material Availability	2
Belt Selection Instructions	23
STRAIGHT-RUNNING BELTS	2
Series 100	
Series 200	
Series 400	
Series 550	
Series 800	
Series 850	
Series 888	
Series 900 Series 1000	
Series 1100	
Series 1200.	
Series 1400	
Series 1500	
Series 1600	
Series 1650	
Series 1700	
Series 1750	249
Series 1800	25
Series 1900	259
Series 4400	26
Series 4500	
Series 9000	
Series 10000	
RADIUS BELTS	
Series 2100	
Series 2200	
Series 2300	
Series 2400	
Series 3000	
Series 4000SPIRAL BELTS	
Series 2600	
Series 2700	
Series 2800	
Series 2850	
Series 2900.	
Series 2950.	
Square Shafts	
Retainer Rings/Center Sprocket Offset	
Round Bore Adapters	
Scroll Idlers	
Wearstrips	42
Custom Wearstrips	
Pusher Bars	
Transfer Plates	
EZ Clean™ in Place (CIP) System	
Hold Down Rollers	
Abrasion Resistance System	
Abrasion Resistance Hinge Rods	
EZ Mount Flex Tip Scraper	
EZ Mount Flex Tip ScraperSection 3: Design Guidelines	
EZ Mount Flex Tip Scraper Section 3: Design Guidelines Conventional Conveyor Components Table	
EZ Mount Flex Tip Scraper Section 3: Design Guidelines Conventional Conveyor Components Table Basic Conveyor Frame Requirements	
EZ Mount Flex Tip Scraper Section 3: Design Guidelines Conventional Conveyor Components Table Basic Conveyor Frame Requirements Basic Dimensional Requirements (Roller Returnway)	430
EZ Mount Flex Tip Scraper Section 3: Design Guidelines Conventional Conveyor Components Table Basic Conveyor Frame Requirements Basic Dimensional Requirements (Roller Returnway) Drive Guidelines	430
EZ Mount Flex Tip Scraper	430 43
EZ Mount Flex Tip Scraper	430 43 ² 434
EZ Mount Flex Tip Scraper	430 433 434 434
EZ Mount Flex Tip Scraper Section 3: Design Guidelines Conventional Conveyor Components Table Basic Conveyor Frame Requirements Basic Dimensional Requirements (Roller Returnway) Drive Guidelines Belt Carryways Returnways and Take-ups Special Conveyors Transfer Design Guidelines	430 433 434 434
EZ Mount Flex Tip Scraper Section 3: Design Guidelines Conventional Conveyor Components Table Basic Conveyor Frame Requirements Basic Dimensional Requirements (Roller Returnway) Drive Guidelines Belt Carryways Belt Carryways Returnways and Take-ups Special Conveyors Transfer Design Guidelines Special Design Guidelines	430 433 434 435 446 446
EZ Mount Flex Tip Scraper Section 3: Design Guidelines Conventional Conveyor Components Table. Basic Conveyor Frame Requirements Basic Dimensional Requirements (Roller Returnway) Drive Guidelines Belt Carryways Returnways and Take-ups. Special Conveyors Transfer Design Guidelines Special Design Guidelines Special Design Guidelines Spection 4: Formulas and Tables	430 431 432 433 434 440 440 448
EZ Mount Flex Tip Scraper	430 433 434 434 446 446 446 447 45
EZ Mount Flex Tip Scraper	430 433 434 434 440 446 455
EZ Mount Flex Tip Scraper Section 3: Design Guidelines Conventional Conveyor Components Table Basic Conveyor Frame Requirements Basic Dimensional Requirements (Roller Returnway) Drive Guidelines Belt Carryways Returnways and Take-ups Special Conveyors Transfer Design Guidelines Special Design Guidelines Special Design Guidelines Section 4: Formulas and Tables Symbols Used Formulas Sample Problems	
EZ Mount Flex Tip Scraper Section 3: Design Guidelines Conventional Conveyor Components Table Basic Conveyor Frame Requirements Basic Dimensional Requirements (Roller Returnway) Drive Guidelines Belt Carryways Belt Carryways Returnways and Take-ups Special Conveyors Transfer Design Guidelines Special Design Guidelines Special Design Guidelines Special Permulas and Tables Symbols Used Formulas Sample Problems Tables	
EZ Mount Flex Tip Scraper Section 3: Design Guidelines Conventional Conveyor Components Table Basic Conveyor Frame Requirements Basic Dimensional Requirements (Roller Returnway) Drive Guidelines Belt Carryways Returnways and Take-ups Special Conveyors Transfer Design Guidelines Special Design Guidelines Special Design Guidelines Section 4: Formulas and Tables Symbols Used Formulas Sample Problems	
EZ Mount Flex Tip Scraper Section 3: Design Guidelines Conventional Conveyor Components Table. Basic Conveyor Frame Requirements Basic Dimensional Requirements (Roller Returnway) Drive Guidelines Belt Carryways Returnways and Take-ups. Special Conveyors Transfer Design Guidelines Special Design Guidelines Special Design Guidelines Symbols Used Formulas and Tables Sample Problems Tables Measurement Conversion Factors Chemical Resistance Guide	
EZ Mount Flex Tip Scraper Section 3: Design Guidelines Conventional Conveyor Components Table. Basic Conveyor Frame Requirements Basic Dimensional Requirements (Roller Returnway) Drive Guidelines Belt Carryways Returnways and Take-ups. Special Conveyors Transfer Design Guidelines Special Design Guidelines Special Design Guidelines Special Permulas and Tables Symbols Used. Formulas Sample Problems Tables Measurement Conversion Factors	43

Engineering Manual Modular Plastic Conveyor Belts

WARRANTY

Intralox, LLC warrants products of its own manufacture for a period of one year from date of shipment, to the extent that Intralox, LLC will repair or replace any products of faulty material or defective workmanship proven under normal use or service. No other warranty is expressed or implied unless otherwise set forth in writing and approved by a representative duly authorized to extend such approval by Intralox, LLC.

CAUTION

Intralox, LLC does not warrant that the design and/or operational function of any machine that incorporates and/or intends to incorporate Intralox, LLC products, conform to any local, state and/or federal regulations and standards relating to public safety, worker safety, safety guards, sanitation safety, fire safety, or any other safety regulations. ALL PURCHASERS AND USERS SHOULD CONSULT THEIR APPROPRIATE LOCAL, STATE AND FEDERAL SAFETY REGULATIONS AND STANDARDS

NOTICE

The information contained in this manual is provided only as an aid and service to our customers. Intralox, LLC does not warrant the accuracy or applicability of such information and, Intralox, LLC is specifically not responsible for property damage and/or personal injury, direct or indirect for damages and/or failures caused by improper machine design, application, installation, operation, abuse and/or misuse of its products whether or not based on information contained herein.

WARNING

Intralox products are made of plastic and can burn. If exposed to an open flame or to temperatures above Intralox specifications, these products may decompose and emit toxic fumes. Do not expose Intralox conveyor belting to extreme temperatures or open flame. Flame retardant belt products are available in some series. Contact Intralox Customer Service for more information.

MAINTENANCE

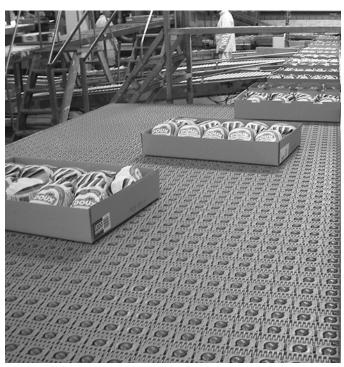
Prior to installing, cleaning, lubricating, or performing maintenance on any conveyor belt, sprocket or system, consult the federal, state, and local regulations in your area regarding the control of hazardous/stored energy (lockout/tagout).

A subsidiary of the Laitram, LLC. All rights reserved worldwide. Intralox is a registered trademark of Laitram, LLC. © 2020 Intralox, L.L.C. 5007799 EN-US

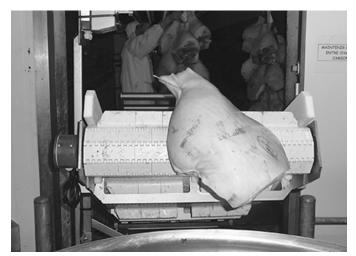
For customer service and application engineering assistance, see Contacts.

Index of Figures

	Plastic modules joined by hinge rods	6
-	Bricklayed structure	6
	Intralox belts are driven by sprockets	7
-	Square-bore sprockets on square shaft	
	Hold down rails and wearstrips for Series 2200 flat-turning belts.	
	Typical two-turn radius layout	
Figure 8:	Hold down rails and wearstrips for Series 2400 flat-turn, High Deck, and Raised Rib belts	342
•	Hold down rails and wearstrips for Series 2400 flat-turn, standard belts	
	Hold down rails and wearstrips for series 2400 flat-turns - belts with hold down guides	
-	Typical two-turn radius layout	
	Typical two-turn radius layout	
	Hold down rails and wearstrips for Series 2700 flat-turns	
Figure 15:	Typical two-turn radius layout	390
•	Hold down rails and wearstrips for Series 2800 flat-turns	
	Typical two-turn radius layout	
3	Typical two-turn radius layout	
	Shaft dimensions.	
	Retainer rings	
	Locked sprocket position	
-	Self-set retainer rings	
	Retainer ring on round shaft	
	Round bore adapter	
	Flat finger-joint wearstrips.	
-	UHMW Specialty wearstrips	
-	Stainless steel backed UHMW wearstrips	
	120 in UHMW radius belt custom wearstrips	
•	Pusher bar side view	
	Pusher bar assembly Dual blade pusher bar assembly	
	Transfer plates	
-	Split sprockets	
	Abrasion resistant (all steel) sprockets	
	AR rods and rodlets	
	Unheaded rod retention	
•	Conventional conveyor components	
-	Basic dimensional requirements (roller returnway)	
Figure 42:	Chordal effects - bottom of range	430
•	Chordal effects - top of range	
-	Typical shaft features.	
-	Intermediate bearings recommended mounting arrangement	
-	Chevron wearstrip arrangement.	
	Buckling belt rows	
	Anti-sag configuration	
	Short conveyors (less than 6 ft[1.8 m]).	
	Medium to long conveyors (6 ft [1.8 m] and longer)	
	Create back tension on short conveyors	
-	Create back tension and belt storage on long conveyors	
Figure 55:	Center-driven bi-directional conveyor	438
-	Center drive with nosebars	
-	Push-pull bi-directional conveyor	
	Incline conveyor Decline conveyor	
-	Elevating conveyor with belt edge slider return.	
-	Elevating conveyor with wide sideguards and shoe return.	
Figure 62:	Elevating conveyor with shoe return	. 442
	Hold down roller	
	Hold down roller, side view	
	Hold down roller, side view	
-	Finger transfer plates dimensional requirements	
	Dead plate gap	
Figure 69:	Conventional full-radius guide rail contour with excessive container pressure force buildup	447
	Parabolic guide rail contours	
-	Parabolic guide rail contours with 6.0 in (152 mm) ONEPIECE Live Transfer belt	
	Primary loads — conventional conveyor	452 456


Section 1: Intralox Overview

With more than 40 years' experience, Intralox continues to lead the way in helping customers achieve their goals by offering comprehensive conveyance solutions that create significant economic value. Intralox delivers innovative, premium technology within a direct business model and a global, industry-specific structure. Our industry-specific teams have an in-depth knowledge of customer applications and provide technical support and consulting, and 24/7 customer service. Working with Intralox allows you to experience our uncompromising commitment to providing solutions and solving problems for our customers.


We pushed past the boundaries of traditional conveying systems with the revolutionary invention of modular plastic belting, and continue to move beyond industry standards with new products, equipment, solutions, and services. Intralox's commitment to innovation has led to over 800 patents currently in force around the world. If our customers have a need, we invent smart solutions to solve them.

Belt Construction

All Intralox belts are constructed with injection molded plastic modules. These modules are assembled into interlocked units and joined by plastic hinge rods.

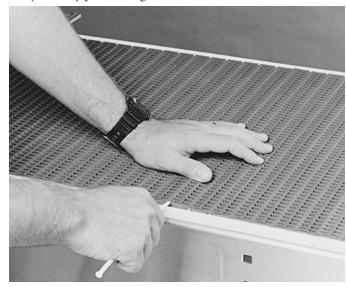


Figure 1: Plastic modules joined by hinge rods

Except for narrow belts (one full module wide, or a partial module), all belts are built with the joints between modules staggered between the joints of adjacent rows. This bricklayed structure interlocks the modules, giving the belt inherent lateral strength. The hinge rods do not hold the belt together from side to side, but act only as pivot members in shear. The belt that results from this construction process is intrinsically

strong, both laterally due to the bricklaying, and longitudinally due to the rods being placed in multiple shear.

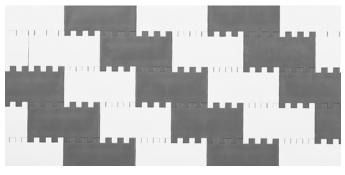


Figure 2: Bricklayed structure

Because of modular construction, Intralox belts can be made in almost any width, from three links wide.

Each belt style incorporates several distinguishing features. Surface, pitch, and drive features are described in detail in *Belt Selection Process*. Hinge and edge features are:

- Open hinges—the hinge rods are visible from either the top or bottom surface (or both) of the belt to aid in belt inspection.
- Closed hinges—the hinge rods are completely enclosed to protect them from abrasives or contaminants.
- Flush edges—flush edges ride snugly beside the conveyor frame rails without gaps or exposed rod heads. They reduce the possibility of product, or belt, snagging on the frame.

intralox

Drive Method

Intralox belts are positively driven by plastic or metal sprockets, not friction rollers. The sprockets, another part of the Intralox system, have square bores and are driven by matching square shafts.

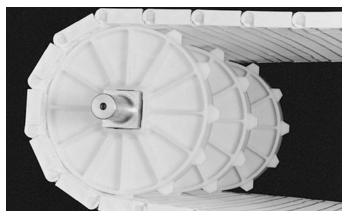

Note: Sprockets are available with round bores for special applications.

Figure 3: Intralox belts are driven by sprockets

Not only do square shafts transmit torque (rotational force) without the need for troublesome keys and keyways, they accommodate the lateral expansion differences of the plastic belt material and the metal shafts. Only one sprocket per shaft is retained. The others are allowed to float, moving along the shaft as the belt expands or contracts. Thus, the sprockets are always transmitting torque. Of all belt drive systems tested, the square shaft with square bore sprockets has proven to be the most effective, economical, reliable, trouble-free, and simple.

INTRALOX OVERVIEW

Figure 4: Square-bore sprockets on square shaft

INTRALOX OVERVIEW

Design Requirements

Intralox conveyor belts are available in various styles, materials, and colors, with many accessory options. To make the appropriate selections when designing for a particular application, reliable information about operating and environmental conditions is critical. Factors to evaluate include:

- The type of belt system: straight running, radius, or spiral
- The overall dimensions of the installed belt: length between driving and idling shafts, width, elevation changes
- The speed of belt travel
- The characteristics of the product to be conveyed:
 - 1. Density
 - 2. Unit size and shape
 - 3. Hardness, toughness, brittleness, rigidity
- 4. Texture (smooth, rough, granular, lumpy, spongy, etc.)
- 5. Corrosiveness
- 6. Moisture content
- 7. Temperature
- 8. Frictional nature
- Any process change in the product during conveyance:
 - 1. Heating

- 2. Cooling
- 3. Washing, rinsing, draining
- 4. Drying
- The sanitary and cleanliness requirements and conditions:
 - 1. USDA-FSIS approval
- 2. Harsh temperatures or chemicals
- 3. Continuous on-line cleaning
- The planned methods of product loading and removal: smooth or impact transfers
- The characteristics of the operating environment:
 - 1. Temperature
 - 2. Moisture, humidity
 - 3. Chemical nature (acid, base, etc.)
 - 4. Abrasive materials (sand, grit, etc.)
 - 5. Hazardous materials (dusts, vapors, etc.)
- The type of drive system:
 - 1. Motors
 - 2. Chains

For more detailed information, see Design Guidelines.

Belt Selection Process

Step 1: Choose the Right Type of Belt System

Choose a straight-running, radius, or spiral belt system.

Step 2: Choose the Right Material for Your Application

Intralox belts and accessories are available in standard and special application materials. For complete descriptions of the standard and special application belt materials see, *Standard Belt Materials* and *Special Application Belt Materials*.

Contact Intralox Customer Service for more information. Current telephone numbers are listed on the back cover. For specific recommendations on chemical properties, see *Chemical Resistance Guide*.

Step 3: Select the Best Belt Surface, Pitch, and Drive Method

Next in the process of choosing the belt for your application is to determine the belt surface or style best suited for the product or material being conveyed. **Note:** Unless otherwise noted, all belts have fully flush edges. The pitch of the belt is the next differentiating feature. Smaller pitch reduces chordal action (over similar size sprockets) and the space required for product transfer. Intralox belts are available in the following belt pitches:

0.315 in (8.0 mm)	1.50 in (38.1 mm)
0.50 in (12.7 mm)	2.00 in (50.8 mm)
0.60 in (15.2 mm)	2.07 in (52.6 mm)
1.00 in (25.4 mm)	2.50 in (63.5 mm)
1.07 in (27.2 mm)	3.00 in (76.2 mm)
1.44 in (36.6 mm)	

Also consider the drive method. Where back tension is an important consideration, drive method plays a significant role. Intralox uses two drive methods: hinge-driven and center-driven.

INTRALOX OVERVIEW

Step 4: Select a Belt of Sufficient Strength for Your Application

After choosing the material and surface style to meet your needs, next determine if the selected belt is strong enough to meet your application requirements.

Analysis for Straight Running Belts

After making a tentative series and style selection, see *Belt Selection Instructions* for instructions to determine the belt pull and adjusted belt pull for comparison with the allowable strength for that belt. To make the necessary calculations for belt pull, gather the following information:

- 1. The product weight applied to the belt, in pounds per square foot (or kilograms per square meter),
- 2. The length of the proposed conveyor, in feet (or meters),
- 3. Any elevation changes in the conveyor, in feet (or meters),
- 4. The desired operating speed, in feet per minute (or meters per minute),
- 5. The percentage of belt area with accumulated product,
- 6. The maximum belt operating temperature, in degrees Fahrenheit or Celsius,
- 7. The type of material upon which the belt will run in the conveyor frame. For example: stainless or carbon steel, UHMW-PE, HDPE, nylon, etc.,
- 8. The service duty, i.e., frequent startups under heavy load, an elevating or "pushing conveyor", etc.

Analysis for Radius and Spiral Belts

These belts require a more complex analysis. The following additional information is required:

- 1. The length of each straight run,
- 2. The turning angle and direction of each turn, and
- 3. The inside turn radius, measured from the inside edge of the belt.

Step 5: Other Important Considerations

Consider the following factors before proceeding any further with belt selection.

Rod Material

Each belt style and material is presented with a standard rod material; however, other rod materials are available and can be evaluated based on your application. Contact Customer Service for more information.

Belt Speed

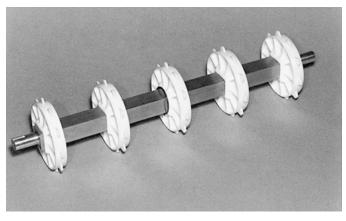
The belt speed affects the wear and life expectancy in these ways:

- 1. Hinge and sprocket wear: The frequency of module rotation about the hinge rods (as the belt engages and disengages the sprockets) is directly proportional to speed. The rotary motion can cause wear to both rods and modules. This wear rate, however, is inversely proportional to the belt's length, i.e., a shorter conveyor can wear faster than a longer one if both are running at the same speed. It follows that sprocket/ tooth wear is directly proportional to speed. Sprockets with more teeth cause less module/hinge rotation, and so less wear than sprockets with fewer teeth.
- Belt surface wear: As belts slide over carryways, returnways, shoes, and other fixed members, some wear is to be expected. The most destructive conditions are high speed, heavy loads, abrasive materials, and dry or non lubricated operation.
- 3. Dynamic effects of high-speed operation: Two effects of high-speed conditions are belt *whipping* or oscillating in unsupported sections, and *load surges* as heavy, stationary products are suddenly accelerated to belt speed. Where possible, avoid both of these conditions.

Abrasive Conditions and Friction Effects

In order to extend belt life, abrasives in a conveying application must be identified, the best combination of materials chosen, and protective features included. Abrasives will wear away any material, but the correct material choice can significantly increase belt life. In highly abrasive applications, the hinge rods and sprockets are usually the first elements to be affected. Hinge rod wear typically results in excessive belt-pitch elongation. This can prevent proper tooth engagement, increasing the wear on sprocket teeth. Intralox offers stainless steel split sprockets and abrasion resistant rods that work to increase belt life.

Chordal Action and Sprocket Selection


As the modules of belts engage their driving sprockets, a pulsation in the belt's linear velocity occurs. This is due to chordal action, which is the rise and fall of a module as it rotates around a shaft's centerline. It is characteristic of all sprocket-driven belts and chains. The variation in speed is inversely proportional to the number of teeth on the sprocket. For example, a belt driven by a six tooth sprocket has a pulsating speed variation of 13.4%, while a belt driven by a 19 tooth sprocket has a variation of only 1.36%. In those applications, where product tipping is a concern, or where smooth, even speed is critical, it is recommended that sprockets with the maximum number of teeth available be selected.

Shafts

Intralox, LLC USA can supply square shafts, machined to your specification, in standard sizes of 5/8 in, 1 in, 1.5 in, 2.5 in, 3.5 in, 40 mm and 60 mm. Available materials are carbon steel (C-1018) (not available in 40 mm and 60 mm) and stainless steel (303, 304 and 316). Contact Intralox Customer Service for more information.

Intralox, LLC Europe offers square shafts in standard sizes of 25 mm, 40 mm, 60 mm, 65 mm, and 90 mm. Available materials are carbon steel (KG-37) and stainless steel (304).

Figure 5: Square shaft

Square shafts need turning of bearing journals only. No keyways for sprockets are required. Only one sprocket per shaft must be retained to prevent lateral belt movement and to provide positive tracking. Sprocket retention is usually accomplished by placing retainer rings on opposite sides of the center sprocket. Standard rings rest in grooves cut into the four corners of the shaft. These grooves introduce stress concentration zones on the shaft. Under high load conditions, the grooves can lead to a premature fatigue failure of the shaft. Self-set retainer rings and small bore round retainer rings are available which do not require grooves.

Shaft Strength

The two primary concerns regarding the strength of the conveyor drive shafts are 1) the ability to pull the belt without excessive shaft deflection, and 2) the strength to transmit the torque for driving the belt. In the first case, the shaft acts as a beam, supported by bearings and stressed by the belt's tension through the sprockets. In the second case, the shaft is being rotated by the drive motor. Resistance from the belt's tension introduces torsional (twisting) stresses. These two types of stresses, maximum deflection and maximum allowable torque, are analyzed separately. Simple formulas are provided for selecting appropriate shafts.

Maximum deflection is governed by adequate belt and sprocket tooth engagement. If the shaft deflects more than 0.10 in (2.5 mm) the sprockets may not engage properly, resulting in "jumping". On bi-directional conveyors with center-drive, the limit is increased to 0.22 in (5.6 mm) because the return side tension is greater and the tooth loading is more uniformly distributed.

INTRALOX OVERVIEW

Wearstrips

Wearstrips are added to a conveyor frame to increase the useful life of the conveyor frame and belt, and to reduce the sliding friction forces. Proper choice of wearstrip design and material, yielding the best coefficient of friction, reduces belt and frame wear, and power requirements.

Any clean liquid, such as oil or water, will act as a coolant and as a separation film between the belt and the carryway, usually reducing the coefficient of friction. Abrasives such as salt, broken glass, soil and vegetable fibers will embed in softer materials and wear on harder materials. In such applications harder wearstrips will prolong belt life.

Static Electricity

Plastic belting may produce a static discharge or spark when used in a dry environment. If static electricity is a potential problem in your application, electrical grounding is recommended. Lubricating or adding moisture to the conveyor running surfaces is also recommended. Electrically Conductive Acetal is available in some belt styles. Contact the Intralox Sales Engineering Department for additional recommendations.

Intralox Services

Engineering Assistance and Design Review To obtain engineering assistance, or to request a design review, contact the Intralox Technical Support Group.¹

Engineering Analysis Computer Programs Intralox offers web-based engineering programs that help determine belt pull, sprocket requirements, motor and drive information, and more. Contact Intralox Customer Service to find out how to access these programs.¹

CAD Drawing Files Auto CAD.DXF templates for all series are available. The templates have belt and molded sprocket details that can be used in CAD conveyor designs. Contact Intralox Customer Service for more information.¹

Product Literature Intralox offers additional technical and application-specific literature on most of the products listed in this manual. Contact Intralox Customer Service for more information.¹

World Wide Web For information on Intralox products, our company, or to get access to our engineering programs, or this Engineering Manual, visit the Intralox web site at *www.intralox.com*.

¹ See the back cover for international contact information.

Section 2: Product Line

Standard Belt Materials

Acetal

This material is a thermoplastic that is considerably stronger than polypropylene and polyethylene. Acetal has a good balance of mechanical and thermal properties.

- Good fatigue endurance and resilience.
- Low coefficient of friction, making it a good choice for container handling and transport.
- Temperature range is -50°F (-46°C) to 200°F (93°C).
- Specific gravity is 1.40
- Relatively impact, cut, and scratch resistant.
- Anti Static acetal (AS acetal) is available for applications
 where a slow static build-up has to be dissipated. With AS
 acetal, dissipation is slow and improves in a humid
 environment. AS acetal is available in Series 400 Non Skid.

Polyethylene (PE)

A lightweight thermoplastic, PE provides superior flexibility and high impact strength.

- Buoyant in water, with a specific gravity of 0.95.
- Excellent product release characteristics.
- Exhibits excellent performance at much lower temperatures.

- Temperature range is -100°F (-73°C) to 150°F (66°C). Check belt specifications for exact figures.
- Resistant to many acids, bases, and hydrocarbons.
- Black polyethylene is recommended for low temperature applications exposed to direct sunlight.

Polypropylene (PP)

A standard material for use in general applications and where chemical resistance is required.

- Good balance between moderate strength and lightweight.
- Buoyant in water, with a specific gravity of 0.90.
- Temperature range is 34°F (1°C) to 220°F (104°C).
- A relatively strong material in normal use, polypropylene exhibits a somewhat brittle quality at low temperatures. It is not recommended in high-impact conditions below 45°F (7°C).
- Good chemical resistance to many acids, bases, salts, and alcohols.
- Black polypropylene is recommended for applications exposed to direct sunlight.

Special Application Belt Materials

Abrasion Resistant (AR) Nylon

This material is available only for Series 1700.

- For abrasive (wet and dry), heavy-duty applications.
- Available in black and white, which are both FDA-approved.
- Temperature range is -50°F to 240°F (-46°C to 116°C).
- 0.5% expansion in belt width at 100% relative humidity.
- Specific gravity is 1.06
- Heat stabilized for superior outdoor wear.
- Uses the same temperature factor table as regular nylon.

CRFR

An engineered material optimized for food processing, where a high degree of chemical resistance is required. One application in particular is continuous-use antimicrobial dip tanks that use peracetic acid (PAA) or similar chemicals.

- Exceptional resistance to strong acids.
- Highly resistant to other sanitation chemicals, salts, alcohols, and oxidants.
- Resistant to ozone, radiation, and UV light.
- Tough and durable, even after continuous chemical exposure.

- Extremely hydrophobic compared to other plastics or metals.
- Temperature range is 0°F (-18°C) to 150°F (66°C)
- The specific gravity is 1.77-1.79.

Detectable Acetal

This material was developed for applications in the food-processing industry where product contamination is a concern. It is detectable by metal or X-ray detectors and used upline from metal or X-ray detectors. It is specially formulated to enhance impact resistance.

- Metal-filled material does not rust or expose hazardous sharp fibers.
- Temperature range is -50°F to 200°F (-46°C to 93°C).
- Material has good impact resistance for temperatures above 34°F (1°C).
- Testing the material on a metal detector in a production environment is the best method for determining detection sensitivity.
- Available in select styles across a wide range of belt series.
 Contact Intralox Customer Service for more information.

PRODUCT LINE

Detectable MX

This material was developed for applications in the food processing industry where product contamination is a concern. It is designed to be detectable by metal or X-ray detectors and used upline from metal or X-ray detectors.

- Detection package will not rust and contains only food-safe additives.
- Temperature range is -50°F to 200°F (-46°C to 93°C).
- Testing the material on a metal and/or X-ray detector in a production environment is the best method for determining detection sensitivity.
- Contact Intralox Customer Service for series and accessory availability.

Detectable Nylon

This material was developed for applications in foodprocessing industries where product contamination is a concern. It is detectable by metal detectors and X-ray machines, and should be used upstream from these machines.

- Available for Series 1700 belts.
- For abrasive (wet and dry), heavy-duty applications.
- Temperature range is -50°F (-46°C) to 180°F (82°C).
- 0.5% expansion in belt width at 100% relative humidity.
- Specific gravity: 1.06.
- Uses the same temperature factor table as regular nylon.
- Metal-filled material does not rust or expose hazardous sharp fibers.
- The thermal expansion coefficient is 0.00072 in/ft/°F (0.11 mm/m/°C)
- Testing the material on a metal detector in a production environment is the best method for determining detection sensitivity.

Detectable Polypropylene A22

This material was developed for applications in the food-processing industry, where product contamination is a concern. Detectable polypropylene A22 is detectable by metal detectors or X-ray machines and used upline from metal or X-ray detectors. It is specially formulated to enhance impact

- Temperature range is 0°F (-18°C) to 150°F (66°C)
- Metal-filled material does not rust or expose hazardous additives.
- Specific gravity is 1.13.
- Material has good impact resistance for temperatures above $34^{\circ}F$ (1°C)

- Testing the material on a metal detector in a production environment is the best method for determining detection sensitivity.
- The thermal expansion coefficient is 0.0011 in/ft/°F (0.17 mm/m/°C)
- Available in select styles across a wide range of belt series.
 Contact Intralox Customer Service for more information.

Easy Release PLUS

This material resists rubber sticking and maintains dimensional stability in the presence of oils and high temperatures. Easy Release PLUS is appropriate for tire industry applications.

- Temperature range is 34°F (1°C) to 220°F (104°C).
- The thermal expansion coefficient is 0.0004 in/ft/°F (0.06 mm/m/°C)
- Easy Release PLUS is available in Series 1400 Flat Top.

Easy Release Traceable Polypropylene

This material was developed to resist rubber sticking and offer metal detectability for tire applications where stickiness and product contamination can be problematic.

- Temperature range is 34°F (1°C) to 220°F (104°C).
- Easy Release Traceable Polypropylene is available in Series 1400 Flat Top.

Electrically Conductive (EC) Acetal

This material can be used to help dissipate static charges that can build up, especially when moving cans or other conductive objects. A metal railing or carryway can be used to ground the belt, dissipating any charge built up in the product. EC acetal is usually spliced into normal belt sections. For example, three rows of EC acetal for every 2 ft (0.61 m) of belt for Series 100 and Series 900, or five rows for every 2 ft (0.61 m) of belt for Series 1100), though entire belts can be made from EC acetal.

- The same chemical resistance and friction factors as regular
- EC acetal has a surface resistivity of 1000 Ohms according to IEC 60093.
- The specific gravity is 1.40.
- EC acetal is only available in Series 100 Flush Grid, Series 400 Flush Grid and Flat Top, Series 900 Flush Grid, Flat Top and Raised Rib, Series 1100 Flush Grid, and Series 1400 Flat Top belt styles.

intralox[.]

PRODUCT LINE

Enduralox Polypropylene

A specially formulated material designed to maximize the life of Intralox belts in a pasteurizer environment. Enduralox polypropylene protects the molecular structure of polypropylene from environmental factors such as temperature cycling, bromine, and chlorine.

• Same physical properties as standard polypropylene.

Flame Retardant Thermoplastic Polyester (FR-TPES)

This material is V-0 rated (UL94 @ 1/32 in), and does not sustain a flame. Though the material does not actively burn, it does blacken and melt in the presence of flame. FR-TPES is stronger than polypropylene, but not as strong as acetal.

- V-0 rated (UL94 @ 1/32 in).
- FR-TPES temperature range is 40°F (4°C) to 150°F (66°C).
- FR-TPES has a specific gravity of 1.45.
- FR-TPES is available in Series 1100 Flush Grid, Series 900
 Flush Grid, Series 900 Flush Grid ONEPIECE Live Transfer
 and Series 900 Perforated Flat Top.

Heat Resistant (HR) Nylon

This material is available for dry, elevated-temperature applications. It complies with FDA regulations for use in food processing and packaging applications.

- UL94 flammability rating of V-2.
- Upper, continuous temperature limit of 240°F (116°C). For intermittent exposure, HR nylon has a rating limit of 270°F (132°C).
- The specific gravity is 1.13.
- This material absorbs water in wet environments, causing belts to expand. Belts also expand due to the temperature change. The thermal expansion coefficient is 0.00054 in/ft/°F (0.081 mm/m/°C).

Hi-Impact

This material is available only for S800 Tough Flat Top. It was developed for applications in the food-processing industry, where extreme impacts are a concern.

- Temperature range is 0°F (-18°C) to 120°F (49°C).
- Specific gravity of 1.18
- The thermal expansion coefficient is 0.001 in/ft/°F (0.156 mm/m/°C)
- Greater impact resistance than acetal and polypropylene

High Heat Resistant (HHR) Nylon

HHR nylon is appropriate for dry, elevated-temperature applications. This material complies with FDA regulations for use in food processing and packaging applications and is USDA-FSIS accepted (meat and poultry).

- UL94 flammability rating of V-2.
- Upper, continuous temperature limit of 310°F (154°C). For intermittent exposure, HHR nylon is rated at 360°F (182°C).
- The specific gravity is 1.13.
- This material absorbs water in wet environments, causing belts to expand. Belts also expand due to the temperature change. The thermal expansion coefficient is 0.00054 in/ft/°F (0.081 mm/m/°C).

Nylon

This material is appropriate for applications that require good dry abrasion and chemical resistance. The two limitations to nylon are that it absorbs water and is more susceptible than acetal to cuts and gouges. Because of material expansion caused by water absorption, nylon is not recommended for very wet applications. For example, at 100% relative humidity, the expansion is close to 3% (at equilibrium), making a 24 in (610 mm) wide belt expand to 24.75 in (629 mm).

- Abrasion resistant in dry applications.
- Good chemical resistance and low temperature performance.
- Stronger than polypropylene.
- Temperature range is -50°F (-46°C) to 180°F (82°C).
- Good fatigue resistance.
- Specific gravity of 1.13.

Polypropylene Composite

A standard material for use in applications where both high strength and chemical resistance are required.

- Excellent strength and stiffness.
- Specific gravity of 1.12.
- Good chemical resistance to acids, bases, salts, and alcohol.
- Temperature range is -20°F (-29°C) to 220°F (104°C).
- An EC (Electrically Conductive) PP Composite can be used to help dissipate built-up static charges. The EC PP Composite is available in Series 1200 Non Skid.
- The thermal expansion coefficient is 0.0004 in/ft/°F (0.06 mm/m/°C).

PRODUCT LINE

intralox.

PK

- · Chemically resistant
- · Impact resistant
- Tough
- Abrasion resistant
- Temperature range: -40°F to 200°F (-40°C to 93°C)
- Thermal expansion coefficient: 0.00073 in/ft/°F (0.11 mm/m/°C)
- Specific gravity: 1.24
- For specific chemical resistance applications, contact Intralox Customer Service or Product Stewardship for a list of chemicals

PVDF

A specialty material with excellent chemical resistance to a wide variety of acids and bases.

- Excellent resistance to acids, bases, salts, and alcohol.
- Specific gravity of 1.78.
- Temperature range is -34°F (1°C) to 200°F (93°C).
- PVDF is available in Series 9000 Flush Grid.
- V-0 rated (UL94 @ 1/32 in)
- Stronger than polypropylene.
- The thermal expansion coefficient is 0.00087 in/ft/°F (0.13 mm/m/°C).

Self Extinguishing Low Moisture (SELM)

This material is a polymer engineered for use in Spiral belts. Self-extinguishing characteristics are important to customers who want to reduce the risk of fires in their plants. Low moisture-absorption characteristics are particularly important to customers who want a material that performs in humid conditions and applications that require cleaning.

- Continuous temperature range is -50°F (-46°C) to 240°F (116°C).
- UL94 V-2 flammability rating
- Specific Gravity is 1.06
- Uses the same temperature factor table as regular nylon.

UVFR

This material does not sustain a flame.

- Excellent resistance to ultraviolet radiation.
- Specific gravity of 1.78
- Temperature range is -34°F (1°C) to 200°F (93°C).
- UVFR is available in Series 1100 Flush Grid and Series 900 Perforated Flat Top.
- V-O rated (UL94 @ 0.03125 in)
- The thermal expansion coefficient is 0.00087 in/ft/°F (0.13 mm/m/°C).

UV Resistant

UV resistant acetal and black polypropylene are available for applications that require UV protection.

- UV resistant acetal temperature range is -50°F (-46°C) to 200°F (93°C).
- UV resistant polypropylene temperature range is 34°F (1°C) to 220°F (104°C).

X-Ray Detectable Acetal

This material is specifically designed for detection by X-ray machines. Developed for applications in the food-processing industry where product contamination is a concern.

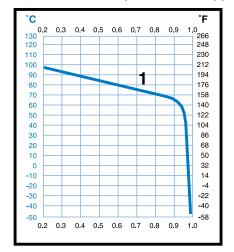
- To be used upline from an X-ray detector.
- Temperature range is -50°F to 200°F (-46°C to 93°C).
- Stronger than polypropylene and polyethylene, with a good balance of mechanical, thermal, and chemical properties.
- Has the same chemical resistance as regular acetal.
- The thermal expansion coefficient is 0.0007 in/ft/°F (0.10 mm/m/°C).
- Testing the material with an X-ray detector in a production environment is the best method for determining detection sensitivity.
- Available in Series 800 SeamFree Open Hinge Flat Top and Series 1500 Flush Grid.
- Contact Intralox Customer Service for conveyor design recommendations when using X-ray detectable material.

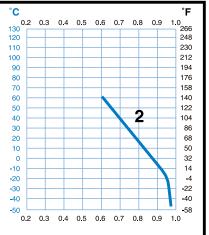
Belt Material Properties

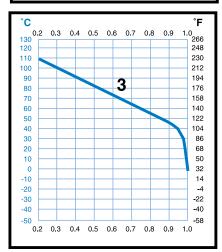
Specific Gravity

This value is the ratio of the material density to the density of water at normal pressures and temperatures. A specific gravity greater than 1.0 means the material is heavier than water. A specific gravity less than 1.0 means the material is buoyant in water.

Material	Specific Gravity
Polypropylene	0.90
Polypropylene composite	1.12
Polyethylene	0.95
Acetal	1.40
EC acetal	1.40
FR-TPES	1.45
Nylon	1.13
HR & HHR nylon	1.13


Friction Factors


Friction factors determine the amount of drag induced by the belt sliding on the conveyor frame or sliding under the conveyed product. Lower friction factors lead to lower line pressures, less product marring, and lower belt pull and power requirements. Higher friction is sometimes required for gradual inclines or declines, or for higher line pressures needed for feed other equipment. The friction factors generally refer to "clean" systems that have little wear or abrasive material present. For conveyor belt strength analysis, use a higher friction factor than normal if any abrasive material, such as flour, sand, cardboard dust, glass, or similar are present. Very abrasive conditions can require friction factors that are two to three times higher than recommended for clean conditions.


Temperature

Temperature affects the physical properties of thermoplastic materials. Generally, as the operating temperature increases, belts weaken in strength, but become tougher and more impact-resistant. In colder applications, belts become stiffer and sometimes become brittle. The temperature factor (T) curve shows the effect of temperature on belt strength. This graph can be used to manually calculate the conveyor belt analysis. The Intralox Engineering Program calculates the temperature factor automatically, based on the operating temperature of the application. For a complete listing of temperature factors, see Table 7.

- 1 Acetal and EC acetal
- 2 Polyethylene
- 3 Polypropylene

¹ Use either the Intralox Engineering Program, or the manual calculations provided in Belt Selection Instructions to perform a conveyor belt strength analysis.

PRODUCT LINE

Friction Factors

Friction Factors ¹		Friction Be	etween Wearstrip	and Belt Wearstr	ip Material	Frict	ion Between Pro	oduct & Belt Prod	uct Material (use	d in
							pro	duct accumulation	n)²	
Belt Material		UHMW Wet (Dry)	HDPE Wet (Dry)	Nylatron Wet (Dry)	Steel (CS & SS) Wet	Glass Wet (Dry)	Steel Wet (Dry)	Plastic Wet (Dry)	Cardboard Wet (Dry)	Aluminum Wet (Dry)
					(Dry)					
Polypropylene (S)		0.11 (0.13)	0.09 (0.11)	0.24 (0.25)	0.26 (0.26)	0.18 (0.19)	0.26	0.11 (0.17)	- (0.21)	0.40
							(0.32)			(0.40)
Polypropylene (A)		NR	NR	0.29 (0.30)	0.31 (0.31)	0.18 (0.19)	0.26	0.11 (0.17)	- (0.21)	0.40
							(0.32)			(0.40)
PP composite (S)	0.30 (0.35)	_	_	0.31 (0.37)	0.24 (0.23)	0.36	0.17 (0.21)	_	0.55
							(0.32)			(0.45)
Polyethylene ³ (S)		0.24 (0.32)	NR	0.14 (0.13)	0.14 (0.15)	0.08 (0.09)	0.10	0.08 (0.08)	— (0.15)	0.20
							(0.13)			(0.24)
Detectable PP		0.24 (0.27)	NR	0.28 (0.29)	0.26 (0.30)	0.18 (0.20)	0.26	0.26 (0.29)	— (0.37)	0.40
	1 (2)	(2.12)	(2.1.1)	(2.2.0)	(2.2.)		(0.30)		(2.22)	(0.40)
Detectable	(S)	- (0.19)	- (0.11)	- (0.24)	- (0.31)	_	_	_	- (0.22)	- (0.31)
nylon	(A)	— (0.32)	– (0.22)	— (0.36)	— (0.30)	_	_		- (0.22)	- (0.31)
max. temp										
Acetal (S)		0.10 (0.10)	0.09 (0.08)	0.13 (0.15)	0.18 (0.19)	0.13 (0.14)	0.13	0.13 (0.16)	– (0.18)	0.33
. ,		, ,	, ,	, ,	, ,	, ,	(0.13)	, ,	, ,	(0.27)
HSEC acetal (S)		0.10 (0.10)	0.09 (0.08)	0.13 (0.15)	0.18 (0.19)	0.13 (0.14)	0.19	0.13 (0.16)	— (0.18)	0.33
							(0.20)			(0.27)
FR TPES (S)		- (0.13)	_	_	_	_	— (0.18)	_	_	- (0.30)
HR nylon	(S)	— (0.18)	– (0.13)	– (0.17)	- (0.27)	– (0.16)	- (0.27)	– (0.16)	— (0.19)	- (0.28)
72°F (22°C)	(A)	- (0.30)	– (0.25)	- (0.26)	- (0.26)	— (0.16)	- (0.27)	— (0.16)	— (0.19)	- (0.28)
HR nylon	(S)	NR	NR	— (0.18)	- (0.27)	– (0.19)	- (0.27)	- (0.47)	- (0.23)	- (0.25)
max. temp.	(A)	NR	NR	- (0.32)	- (0.39)	— (0.19)	- (0.27)	- (0.47)	- (0.23)	- (0.25
AR nylon	(S)	— (0.19)	— (0.11)	- (0.24)	- (0.31)	_	_	_	- (0.22)	- (0.31)
max. temp	(A)	- (0.32)	- (0.22)	- (0.36)	- (0.30)	_	_	_	- (0.22)	- (0.31)
UV Resistant PP		0.11 (0.13)	0.09 (0.11)	0.24 (0.25)	0.26 (0.26)	0.18 (0.19)	0.26	0.11 (0.17)	- (0.21)	0.40
							(0.32)			(0.40)
PVDF		-	-	-	0.20 (0.20)	-	0.20	-	-	0.15
							(0.20)			(0.15)
Hi-Impact		0.23 (0.21)	-	-	0.31 (0.33)	-	— (0.64)	-	-	-
Easy Release	(S)	0.11 (0.13)	0.09 (0.11)	0.24 (0.25)	0.26 (0.26)	_	_	_		
PLUS										
SELM	(S)	— (0.19)	— (0.11)	— (0.24)	- (0.31)	_	_	_	- (0.22)	- (0.31)
	(A)	- (0.32)	- (0.22)	- (0.36)	- (0.30)	_	_	_	- (0.22)	- (0.31)

¹ Friction factor values are highly dependent on environmental conditions. The low value of the friction factor range is an experimentally derived friction factor for new beits on new wearstrip. Only use this value in the cleanest environments, or where water or other lubricating agents are present. Most friction factors must be adjusted based on the environmental conditions surrounding the conveyor.

² Friction factors for friction between product and belt only apply for Flat Top, Perforated Flat Top, Mesh Top, Flush Grid and Raised Rib belts.

³ Polyethylene is not recommended for container handling.

Belt Material Compliance

FDA Compliant

The material meets the FDA requirements described in the applicable Code of Federal Regulations, Chapter 21, Part 177 as noted. The material is chemically acceptable to the USDA for repeat use applications in slaughtering, processing, transporting, and storage areas in direct contact with meat or poultry products.

EU Compliant

The material complies with the framework regulation 1935/2004/EC. The monomers and additives used to make the plastic are listed in the Union List. When tested to the criteria

described in EU Regulation 10/2011, the finished article did not exceed the overall migration limit (OML) and any applicable specific migration limits (SML).

3A Dairy Tested

This test is based on materials, not product design. In accelerated use testing, the materials show that when they are cleaned and sanitized they maintain essential functional properties and surface finish.


	Belt Material Compliance ¹										
Material Name	FDA Compliant	EU Compliant	3-A Dairy Tested								
Acetal	FCN 1573	1935/2004/EC Regulation 10/2011	20-27								
AR nylon	21 CFR 177.1500	1935/2004/EC Regulation 10/2011	20-27 (white)								
CRFR	21 CFR 177.2510	1935/2004/EC Regulation 10/2011	Not tested								
Detectable acetal	21 CFR 177.2470	1935/2004/EC Regulation 10/2011	20-25								
Detectable nylon	21 CFR 177.1500	Not compliant due to sizing agent	Not tested								
Detectable polypropylene A22	21 CFR 177.1520	1935/2004/EC Regulation 10/2011	20-27								
Enduralox polypropylene	21 CFR 177.1520	1935/2004/EC Regulation 10/2011	Not tested								
HR nylon	21 CFR 177.1500	1935/2004/EC Regulation 10/2011	20-27 (white)								
HHR nylon	21 CFR 177.1500	1935/2004/EC Regulation 10/2011	Not tested								
Hi-Impact	21 CFR 177.2600	1935/2004/EC Regulation 10/2011	Not tested								
Hi-Temp	21 CFR 177.2415	1935/2004/EC Regulation 10/2011	Not tested								
Nylon	21 CFR 177.1500	1935/2004/EC Regulation 10/2011	Not tested								
Polyethylene	21 CFR 177.1520	1935/2004/EC Regulation 10/2011	20-23 (blue, natural, red)								
Polypropylene	21 CFR 177.1520	1935/2004/EC Regulation 10/2011	20-25 (blue, white, natural)								
Polypropylene composite	21 CFR 177.1520	1935/2004/EC Regulation 10/2011	Not tested								
PK	FCN 1847	1935/2004/EC Regulation 10/2011	Not tested								
SELM	21 CFR 177.1500	1935/2004/EC Regulation 10/2011	Not tested								
X-Ray Detectable Acetal	21 CFR 177.2470	1935/2004/EC Regulation 10/2011	Not tested								

General Application Sprocket Material

Acetal

These sprockets are used for most general-purpose applications. This material is considerably stronger than polypropylene and polyurethane, and has a good balance of mechanical, thermal, and chemical properties.

- Acetal has good fatigue endurance and resilience.
- Acetal has good non-abrasive wear characteristics.
- The temperature range of acetal is -50°F (-46°C) to 200°F
- This material complies with FDA regulations for use in food processing and packaging applications.

¹ Contact Intralox Customer Service to verify compliance for specific belt series, styles, and material color combinations.

Special Application Sprocket Material

Abrasion Resistant Nylon

These sprockets are used in abrasive applications.

• Temperature range is -50 °F (-46 °C) to 240°F (116°C).

Glass Filled Nylon

These sprockets are available for Series 900, Series 1100, Series 1400, Series 2400, Series 4000, and Series 4500. This material is more abrasion resistant than acetal but not as abrasion resistant as stainless steel. Temperature range of glass filled nylon is -51°F (-46°C) to 240°F (116°C). This material is not chemical resistant.

Glass Filled Nylon with Polypropylene Joining Plate

These sprockets are available in Series 900. The glass filled nylon tooth plate is assembled with a Polypropylene joining plate that forms the hub of the sprocket. The temperature range for the two material sprocket is 34 °F (1 °C) to 220 °F (104 °C). A relatively strong material in normal use, polypropylene exhibits a somewhat brittle quality at low temperatures. It is not recommended in high impact conditions below 45 °F (7 °C).

Polyurethane Composite Split

These sprockets are available in Series 400. The polyurethane composite split sprocket consists of one polyurethane composite tooth plate assembled between polypropylene joining plates that form the hub of the sprocket. The temperature range for polyurethane composite is -50°F (-46°C) to 240°F (116°C). This sprocket is recommended for drive shafts only. The sprocket is split into two pieces for easy assembly onto and off the shaft. A relatively strong material in normal use, polypropylene exhibits a somewhat brittle quality at low temperatures. It is not recommended in high impact conditions below 45°F (7°C).

Polyethylene

These sprockets are available for the Series 3000 and some Series 2600 sprockets.

Note: Not all sprocket pitch diameters, bore sizes and material combinations are available in all series. Those that are available can either be stocked or made to order. Contact Intralox Customer Service for availability and lead-times (some available combinations can be long lead time items).

Polypropylene

These sprockets are used for applications where chemical resistance can be required.

- Polypropylene (PP) has good chemical resistance to many acids, bases, salts, and alcohols.
- The temperature range of PP is 34°F (1°C) to 220°F (104°C).
- A relatively strong material in normal use, PP exhibits a somewhat brittle quality at low temperatures. It is not recommended in high impact conditions below 45°F (7°C).
- This material complies with FDA regulations for use in food processing and packaging applications.
- Contact Intralox Customer Service for PP sprocket availability.

Polypropylene Composite

This is a standard material for use in applications where both high strength and chemical resistance may be required.

- · Excellent strength and stiffness.
- Specific gravity of 1.12.
- Good chemical resistance to acids, bases, salts and alcohol.
- Temperature range is -20 °F (-29 °C) to 220 °F (104 °C).
- The thermal expansion coefficient is 0.0004 in/ft/ °F (0.06 mm/m/°C).

Polyurethane

These sprockets are used for applications where abrasive wear is common.

- The temperature range of polyurethane is 0°F (-18°C) to 120°F (49°C). Polyurethane becomes soft and flexible at high temperatures and has good chemical resistance.
- Series 800, 1600, 2200, and 2400 have a lower rating when using polyurethane sprockets. See the individual belt data pages for these ratings.

Polyurethane Composite

These sprockets are standard for Series 1200 and for 31-tooth Series 1400. This material is extremely rigid and can handle a large range of chemicals and temperatures. The temperature range for polyurethane composite is -50°F (-46°C) to 240°F (116°C).

PRODUCT LINE

Stainless Steel

These split sprockets are used in applications with abrasive wear, or when shaft removal is not practical. There are two types of stainless steel sprockets. The all-metal abrasion resistant sprockets are available in a many series and pitch diameters. The stainless steel split consists of one to three stainless steel tooth plates assembled between polypropylene joining plates that form the hub of the sprocket.

- The sprocket is split into two pieces for easy assembly on and off a shaft.
- Stainless steel split sprockets have good chemical resistance.
- The temperature range for polypropylene is 34°F (1°C) to 220°F (104°C).
- A relatively strong material in normal use, polypropylene exhibits a somewhat brittle quality at low temperatures. It is not recommended in high impact conditions below 45°F (7°C).

- These materials are FDA-compliant for use in food processing and packaging applications.
- These sprockets are built standard with 304 stainless steel plates and can be specially ordered with 316 stainless steel plates.
- Contact Intralox Customer Service for availability.

Ultra Abrasion Resistant Polyurethane

These sprockets are available for Series 400 and Series 1700.

- For abrasive, heavy-duty applications.
- For non-FDA applications.
- Temperature range -40°F to 160°F (-40°C to 70°C).
- Series 400 has a lower rating when using ultra abrasion resistant polyurethane sprockets.

Sprocket Material Availability

The following table lists the materials available for each Intralox sprocket by Series and pitch diameter. Note: not all sprockets of each pitch diameter are available in all listed materials. A material available for one bore type or bore size is not always available for other bore types and/or bore sizes of

the same Series and pitch diameter sprocket. Sprockets can be either stocked or made-to-order, and can have long lead times. Lead times vary by sprocket. Some make-to-order sprockets also have set up charges. Contact Intralox Customer Service for specific lead-times and availability.

		Sprocket Materials ¹										
		Acetal	Poly- propylene	Split Metal	AR ² Metal	AR ² Nylon	Polyurethane	Glass Filled Nylon	Polyethylene	Polyurethane Composite	Ultra AR ² Polyurethane	Poly- propylene Composite
Pitch Diameter in	No.											
(mm)	Teeth											
S100												
2.0 (51)	6	•	•									
3.5 (89)	11	•	•	•			•					
6.1 (155)	19	•	•	•			•					
S200												
4.0 (102)	6	•	•				•					
6.4 (163)	10	•	•		•		•					
10.1 (257)	16	•	•		•							
S400												
4.0 (102)	6	•	•	•		•	•					
5.2 (132)	8	•	•	•								
5.8 (147)	9			•3								
6.4 (163)	10	•	•	•	•	•				•	•	
7.8 (198)	12	•	•	•	•	•				•	•	
8.4 (213)	13			•3								
10.1 (257)	16	•	•	•	•	•				•	•	
S550												
2.4 (61)	24	•										
3.2 (81)	32	•										
S800												
4.0 (102)	6	•	•				•					
5.2 (132)	8	•	•	•			•					
6.5 (165)	10	•	•	•4			•				•	
7.7 (196)	12	•	•	•4			•				•	
10.3 (262)	16	•	•	•4							•	
S850												
4.0 (102)	6	•	•				•					
5.2 (132)	8	•	•	•4			•					
6.5 (165)	10	•	•	•4			•		<u> </u>			
7.7 (196)	12	•	•	•4			•		 			<u> </u>
10.3 (262)	16	•	•	•4					-			-
\$888	10			•	-	-						-
	10	•			<u> </u>	•			-			
6.5 (165) 7.7 (196)	10	•				•			-			
\$900	12	•			-	-			-			-
2.1 (53)	6	•	•						-			
		•	•									
3.1 (79)	9	•	•									L

Pitch Diameter in								Sprocket Materials ¹								
		Acetal	Poly- propylene	Split Metal	AR ² Metal	AR ² Nylon	Polyurethane	Glass Filled Nylon	Polyethylene	Polyurethane Composite	Ultra AR ² Polyurethane	Poly- propylene Composite				
(mm)	No. Teeth															
3.5 (89) 4.1 (104)	10 12	•	•	•	•		•									
5.1 (130)	15	•		•	_		•	•								
5.8 (147)	17	•	•	•	•			•								
6.1 (155)	18	•	•	•	•		•	•								
6.8 (173)	20	•	•	•	•		•	•								
9.8 (249)	28			•	_		•	-								
\$1100	20			•												
1.6 (41)	8				•											
2.3 (58)	12	•			•											
3.1 (79)	16	•	•		_											
3.5 (89)	18	•	•	•												
3.8 (97)	20	•	•													
4.6 (117)	24	•	•	•				•								
5.1 (130)	26	•	•	•				•								
6.1 (155)	32	•	•	•				•								
\$1200	JZ			-												
5.6 (142)	12			•												
6.5(165)	14			•						•						
7.4 (188)	16			-						•						
7.4 (188)	17									•						
10.2 (258)	22			•						•						
\$1400	44			-						-						
3.9 (99)	12	•				•										
4.9 (124)	15	•				•										
5.1 (130)	16	•				•		•								
5.7 (145)	18	•				•		•				•				
6.7 (170)	21	•				•		•				•				
7.7 (196)	24	•				•		•								
9.9 (251)	31	•				_				•		•				
\$1500	31									•						
1.9 (48)	12	•														
2.3 (58)	14	•														
2.7 (69)	17	•														
3.8 (97)	24	•				•										
5.7 (145)	36	•				•										
\$1600	30															
2.0 (51)	6	•														
3.2 (81)	10	•					•									
3.9 (99)	12	•					•									
6.4 (163)	20	•					•									
\$1650	20	•					•									
2.0 (51)	6	•														
3.2 (81)	10	•														
3.9 (99)	12	•														
6.4 (163)	20	•														
\$1700	20															
5.8 (147)	12										•					
6.7 (170)	14										•					
7.7 (196)	16										•					
10.5 (267)	22								 		•					
\$1750	22										<u> </u>					
6.8 (173)	14										•					
7.8 (198)	16										•					
10.6 (269)	22										•					
\$1800	22															
5.0 (127)	6	•														
6.5 (165)	8	•														
8.1 (206)	10	•														
10.5 (267)	13	•														
\$1900	13															
6.7 (170)	10			•												
10.0 (254)	15			•												
10.6 (269)	16			•												
\$2100	10					_										
2.3-6.9 (58-175)	12					•										
S2200																
3.9 (99)	8	•	•													
5.3 (135)	11 13	•	•				•									

PRODUCT LINE

		Sprocket Materials ¹										
							эргоск		riais			D.L.
		Acetal	Poly- propylene	Split Metal	AR ² Metal	AR ² Nylon	Polyurethane	Glass Filled Nylon	Polyethylene	Polyurethane Composite	Ultra AR ² Polyurethane	Poly- propylene Composite
Pitch Diameter in (mm)	No. Teeth							.,				
7.7 (196)	16	•	•									
S2300	10											
3.9 (99)	12					•						
5.1 (130)	16					•						
5.8 (147)	18					•						
6.4 (163)	20					•						
S2400												
2.0 (51)	6	•										
2.9 (74)	9	•										
3.9 (99)	12	•	•				•	•				
5.1 (130)	16	•	•			•	•	•			•	
6.4 (163)	20	•	•					•			•	
S2600												
5.2 (132)	8	•							•			
6.5 (165)	10	•							•			
S2700												
5.2 (132)	8	•										
6.5 (165)	10	•										
S2800												
6.3 (160)	13	•										
S2850												
6.2 (157)	13	•										
S2900												
6.2 (157)	13	•										
S2950												
6.2 (157)	13	•										
\$3000												
5.2 (132)	8								•			
6.5 (165)	10								•			
7.7 (196)	12								•			
S4000												
3.9 (99)	12	•										
4.9 (124)	15	•										
5.1 (130)	16							•				
5.7 (145)	18	•						•				
6.7 (170)	21							•				
9.9 (251)	31									•		•
\$4400												
4.0 (102)	6					•						
5.3 (135)	8					•						
6.5 (165)	10 12			-				•				
7.8 (198) 10.3 (262)	12					•		•				
\$4500	10			-		•		•				
6.5 (165)	10			-				•				•
7.8 (198)	12			-				•				•
10.3 (262)	16			-		•		•				•
\$9000	10			-				•				•
3.3 (84)	10			-	 	•						
4.2 (107)	13	1		 		•						
6.1 (155)	19	1				•						
6.5 (165)	20	•		•								•
8.1 (206)	25	+ -		•								•
12.9 (328)	40								•			•
\$10000	,,,								-			
9.9 (251)	10					•						
11.8 (300)	12					•						
13.7 (348)	14					•						
15.7 (399)	16			 		•						
(000)		1							1	l	l	1

0

¹ All Intralox sprockets can be classified either as stock items or as make-to-order items. Some make-to-order items incur special setup charges. Contact Intralox Customer Service for pricing, lead times, and availability.

² Abrasion resistant

 $^{^{3}}$ For use with Series 400 Flush Grid acetal and EC acetal only.

 $^{^{\}rm 4}\,\mbox{Available}$ in three-plate, abrasion resistant split design.

Belt Selection Instructions

To determine if a belt is suitable for a particular application, the operating load versus operating strength must be identified. Use the following steps to calculate this comparison:

Step 1: Calculate the Belt Tension Load or Belt Pull (BP) LB/FT (KG/M)

$$BP = [(M + 2W) \times FW + M_D] \times L + (M \times H)$$

where:

 \mathbf{M} = Product loading, lb/ft² (kg/m²)

W = Belt weight, lb/ft² (kg/m²) (found on the belt data page)

L = Length of conveyor, ft (m), centerline (\mathbb{C}) to \mathbb{C}

H = Elevation change of conveyor, ft (m)
 F_w = Wearstrip to belt friction coefficient

 $\mathbf{M_p} = \mathbf{M} \times (\mathbf{F_p} \times \% \text{ belt backed-up}), \text{ loading due to backed-up product}$

Obtain $F_{\rm w}$ and $F_{\rm p}$ from the belt data table of the belt style you are considering. If products are not backed up on belt, ignore $M_{\rm p}$.

Step 2: Adjust the Calculated BP for Specific Service Conditions

Since the belt can experience various conditions, adjust the BP by applying an appropriate Service Factor (SF).

Determine SF:

Service Factor (S	F)							
Starts under no load, with load applied gradually	у	1.0						
Frequent starts under load (more than once per								
hour)	Add 0.2							
At speeds greater than 100 FPM (feet per minut	e)							
(30 meters/min)	Add 0.2							
Elevating conveyors	Add 0.4							
Pusher conveyors	Add 0.2							
	Total							
Note: At speeds greater than 50 FPM (15 m/min) on conveyors that are								
started with backed-up lines, consider soft-star	started with backed-up lines, consider soft-start motors.							

Determine the adjusted belt pull (ABP):

$$ABP = BP \times SF$$

Determine the adjusted belt pull (ABP) for bi-directional and pusher conveyors:

$$ABP = BP \times SF \times 2.2$$

where:

ABP= **ADJUSTED BELT PULL**, lb/ft (kg/m) of belt width

Step 3: Calculate Allowable Belt Strength, ABS LB/FT (KG/M) of Belt Width

The allowable belt strength (ABS) may, because of specific operating conditions, be less than the rated belt strength shown on the belt data page. Therefore, the ABS is calculated from:

$$ABS = BS \times T \times S$$

where:

BS = **BELT STRENGTH** from the belt data page.

T = TEMPERATURE FACTOR from Temperature.

S = **STRENGTH FACTOR** from belt data page.

The strength factor is found at the intersection of the speed/length ratio and the appropriate sprocket line. To get the speed/length ratio, divide the belt speed (ft/min) by the shaft centerline distance (ft). The strength factor adjusts the belt rating to account for wear caused by the combination of high speed, short conveyor lengths, and small sprocket sizes.

Step 4: Compare ABP with ABS

If the ABS exceeds ABP, this belt is strong enough for your application. Proceed to the next steps to determine drive shaft sprocket spacing, shaft strength, and horsepower required. If the ABS is less than ABP and you are able to change some application parameters (for example, product load distribution or belt speed), the recalculated ABP may be acceptable.

Step 5: Determine Maximum Spacing of Drive Shaft Sprockets

Determine the percentage of allowable belt strength utilized (ABSU):

$$ABSU = (ABP \div ABS) \times 100\%$$

Using the ABSU, find the maximum sprocket spacing from the graph on the sprocket data page of the series you are considering. The spacing of sprockets on idler shafts may, under some circumstances, be greater than drive spacing. Do not exceed 6.0 in (152 mm) sprocket spacing on idler shafts for all series (except Series 200, where maximum spacing can never exceed 7.5 in [191 mm]). If the calculated ABSU is above 75%, contact Intralox Customer Service Sales Engineering to run the Intralox Engineering Program and verify your results.

intralox.

PRODUCT LINE

Step 6: Confirm Drive Shaft Strength

Drive shafts must be stiff enough to resist excessive bending or deflecting under the belt pull, and strong enough to transmit the required torque from the driver. To ensure adequate shaft selection, determine both the drive shaft deflection and torque. Select a shaft size which fits your sprocket of choice from the sprocket data page.

Note: Most sprockets have more than one available bore size. The shaft deflects under the combined loads of the adjusted belt pull and its own weight. The total shaft load (w) is found from:

$$w = (ABP + Q) \times B$$

where:

Q = **SHAFT WEIGHT**, lb/ft (kg/m), from the shaft data table

B = BELT WIDTH, ft (m)

For shafts supported by two bearings, the deflection (D), is calculated from:

$$D = \frac{5}{384} \times \frac{W \times L_S^3}{E \times I}$$

where:

Ls = **LENGTH OF SHAFT** between bearings, in (mm)

E = **MODULUS OF ELASTICITY** from *Table* 8.

I = MOMENT OF INERTIA from Table 8.

Note: For shafts supported by three bearings, see *Deflections with Intermediate Bearings*.

If the calculated deflection is less than the recommended maximum of 0.10 in (2.5 mm) for standard conveyors or 0.22 in (5.6 mm) for bi-directional conveyors, calculate the required torque. If not, use a larger size shaft, a stronger material, or a shorter span between bearings, and recalculate the deflection.

The Torque (T_0) , to be transmitted is determined from:

$$T_o = ABP \times B \times \frac{PD}{2}$$

where:

PD = PITCH DIAMETER OF SPROCKET from the sprocket data page

Now compare T_o with the maximum recommended torque on the drive shaft (see *Tables*) for the shaft journal sizes shown. Using a journal diameter which can be machined on the selected shaft, determine its maximum recommended torque. This value should exceed T_o . If not, try a stronger material or larger shaft.

Step 7: Determine the Power Needed to Drive the Belt

Drive horsepower (HP) is found from:

$$HP = \frac{ABP \times B \times V}{33000}$$

where:

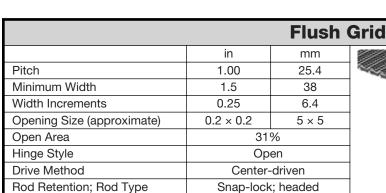
ABP= **ADJUSTED BELT PULL**, lb/ft of belt width

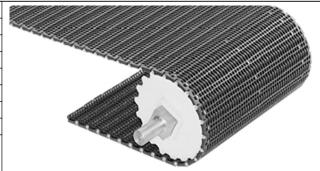
B = BELT WIDTH, ft V = BELT SPEED, ft/min

Power in watts is found from:

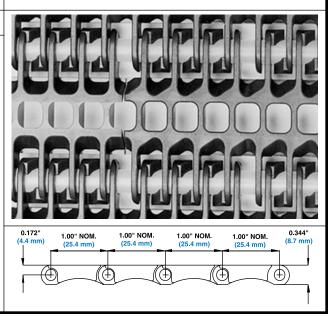
WATTS =
$$\frac{ABP \times B \times V}{6.12}$$
1 HP = 745.7 WATTS

where:


ABP= **ADJUSTED BELT PULL**, lb/ft of belt width

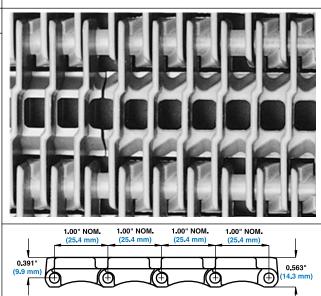

B = BELT WIDTH, ft V = BELT SPEED, ft/min

To obtain the required motor power, add expected power losses in the drive train between drive shaft and motor to the calculated power. See *Design Guidelines* for recommendations. Having determined the suitability of this belt, the sprocket spacing, the drive shaft size, and the power requirements, you are now ready to select accessories and design the conveyor assembly.


STRAIGHT-RUNNING BELTS

Product Notes

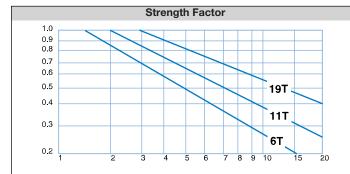
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Lightweight, relatively strong belt with smooth upper surface.
- Smaller pitch reduces chordal action and transfer dead plate gap.
- For more material selections and stronger belt performance, see Series 900 Flush Grid and Series 1100 Flush Grid.


Belt Data									
Belt material	Standard rod material Ø 0.18 in (4.6 mm)	Belt strength		Temperature range (continuous)		Belt weight			
	0.18 (11 (4.6 (1)(1))	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²		
Polypropylene	Polypropylene	300	450	34 to 220	1 to 104	0.54	2.64		
Polyethylene	Polyethylene	200	300	-50 to 150	-46 to 66	0.58	2.83		
Acetal	Polypropylene	600	890	34 to 200	1 to 93	0.78	3.81		
HSEC acetal	Polypropylene	400	595	34 to 200	1 to 93	0.78	3.81		
Acetal ¹	Polyethylene	550	820	-50 to 70	-46 to 21	0.78	3.81		

		Raised	Rib		
	in	mm			
Pitch	1.00	25.4	322		
Minimum Width	1.5	38			
Width Increments	0.25	6.4			
Opening Size (approximate)	0.2 × 0.2	5 × 5			
Open Area	31	%			
Product Contact Area	28	%			
Hinge Style	Op	Open			
Drive Method	Center-	Center-driven			
Rod Retention; Rod Type	Snap-lock	k; headed			

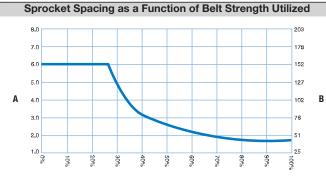
Product Notes

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- · Smooth upper surface with closely spaced ribs
- Can be used with finger transfer plates to eliminate product tipping and hang-up.
- · For more material selections and stronger belt performance, see Series 900 Raised Rib.



Belt Data									
Belt Material	Standard Rod Material Ø 0.18 in (4.6 mm)	Belt Strength		Temperat (conti	Belt Weight				
	9 0.18 111 (4.0 11111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²		
Polypropylene	Polypropylene	300	450	34 to 220	1 to 104	0.82	4.00		
Polyethylene	Polyethylene	200	300	-50 to 150	-46 to 66	0.88	4.29		
Acetal	Polypropylene	600	890	34 to 200	1 to 93	1.20	5.86		
Acetal ¹	Polyethylene	550	820	-50 to 70	-46 to 21	1.20	5.86		

SERIES 100

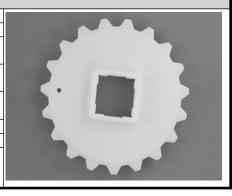

			nd Support Quantity Referen	
Belt Wid	lth Range ¹	Minimum Number of	W	earstrips
in	mm	Sprockets Per Shaft ²	Carryway	Returnway
2	51	1	2	2
4	102	1	2	2
6	152	2	2	2
7	178	2	3	2
8	203	2	3	2
10	254	2	3	2
12	305	3	3	2
14	356	3	4	3
15	381	3	4	3
16	406	3	4	3
18	457	3	4	3
20	508	5	5	3
24	610	5	5	3
30	762	5	6	4
32	813	7	7	4
36	914	7	7	4
42	1067	7	8	5
48	1219	9	9	5
54	1372	9	10	6
60	1524	11	11	6
72	1829	13	13	7
84	2134	15	15	8
96	2438	17	17	9
120	3048	21	21	11
144	3658	25	25	13
		odd number of sprockets at nm) centerline spacing. ³	Maximum 6 in (152 mm) centerline spacing	Maximum 12 in (305 mm) centerline spacing

Speed/length ratio (V/L) Divide belt speed "V" by the shaft centerline distance "L". Strength Factor is found at intersection of speed/length ratio and appropriate sprocket line. See

V = ft/min (m/min) T = number of teeth L = ft (m)

Belt Selection Instructions for more information.

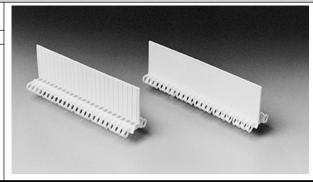
Percentage of allowable belt strength utilized


- A Sprocket spacing, in
- B Sprocket spacing, mm

¹ If belt width exceeds a number listed in the table, see the sprocket and support material minimums for the next larger width range. Belts are available in 0.25 in (6.4 mm) increments beginning with minimum width of 1.5 in (38 mm). If the actual width is critical, contact Intralox Customer Service.

² This number is a minimum. Heavy-load applications can require additional sprockets.

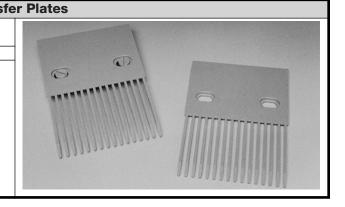
³ Lock down the center sprocket. With only two sprockets, fix the sprocket on the drive journal side only. For lockdown location, see Retainer Rings/Center Sprocket Offset.


							Molde	d Spro	cket		
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Available Bore Sizes				
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Metric		
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	
Action)	in	mm	in	mm	in	mm	in	in	mm	mm	
6	2.0	51	2.1	53	0.75	19		1.0			
(13.40%)											
11	3.5	89	3.7	94	0.75	19		1.0		40	
(4.05%)								1.5			
19	6.1	155	6.3	160	1.25	32		1.5		40	
(1.36%)								2.5		60	
,										65	

	Split Metal Sprocket										
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A۱	vailable B	ore Size	S	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric	add.
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	
Action)	in	mm	in	mm	in	mm	in	in	mm	mm	1000
11	3.5	89	3.7	94	1.5	38		1.5		40	
(4.05%)											
19	6.1	155	6.3	160	1.5	38		1.5		40	
(1.36%)								2.5		60	
									1	65	

	ling Flights		
Available F	light Height	Available Materials	
in	mm	Available Waterlas	
1.5	38	Polypropylene, polyethylene, acetal	

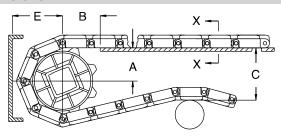
- No fasteners are required.
- The Streamline side of the flight is smooth and the No-Cling side is vertically ribbed.
- Can be cut down to custom heights. Minimum height: 0.25 in (6.4 mm).
- Available in linear increments of 1 in (25 mm).
- Minimum indent without sideguards: 0.5 in (13 mm).


		Sidegua
Availab	le Sizes	Available Materials
in	mm	Available Materials
2	51	Polypropylene, polyethylene, acetal

- Sideguards are used with Flush Grid belts to ensure product containment, they are of the standard overlapping design.
 Sideguards are an integral part of the belt, fastened by the hinge rods.
- When going around the 6 and 11 tooth sprockets, the sideguards fan out, opening a gap at the top that can allow small products to fall out. The sideguards stay completely closed when wrapping around the 19 tooth sprocket.
- Standard sideguard orientation is angled inward toward the product.
 If needed, sideguards can be angled outward toward the conveyor.
- Minimum indent: 0.75 in (19 mm).
- Standard gap between the sideguards and the edge of a flight: 0.06 in (2 mm).

			Finger Trans
Available	e Widths	Number of	Available Materials
in	mm	Fingers	
4	102	16	Acetal

- Designed for use with Series 100 Raised Rib belts, to eliminate product transfer and tipping problems.
- The fingers extend between the belt ribs, to allow a smooth continuation of the product flow as the belt engages the sprockets.
- Easily installed on the conveyor frame with the supplied shoulder bolts.



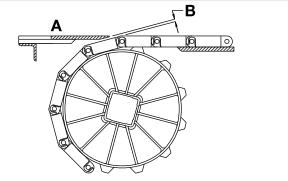
Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see Basic Conveyor Frame Requirements.

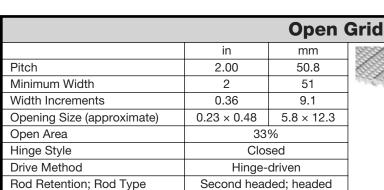
A \pm 0.031 in (1 mm) **B** \pm 0.125 in (3 mm) C ± (max.) E ± (min)

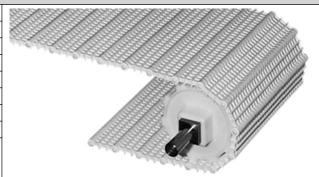

Sprocket Description		A		В		С		E		
Pitch D	Diameter	No. Teeth	Range (Botton	n to Top)	in	mm	in	mm	in	mm
in	mm	No. reeur	in	mm	""	111111	""	111111	111	mm
	Series 100 Flush Grid									
2.0	51	6	0.69-0.83	18-21	1.30	33	2.10	53	1.24	31
3.5	89	11	1.53-1.60	39-41	1.70	43	3.60	91	2.01	51
6.1	155	19	2.82-2.87	72-73	2.20	56	6.20	157	3.30	84
			Seri	es 100 Raised F	Rib					
2.0	51	6	0.69-0.83	18-21	1.30	33	2.10	53	1.45	37
3.5	89	11	1.53-1.60	39-41	1.70	43	3.60	91	2.23	57
6.1	155	19	2.82-2.87	72-73	2.20	56	6.20	157	3.52	89

Dead Plate Gap

A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

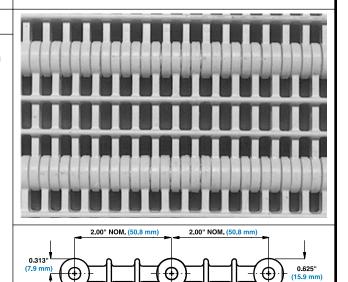
When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.

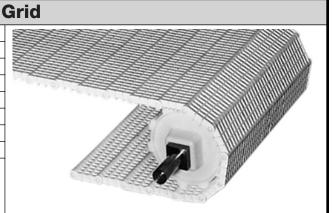

Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.



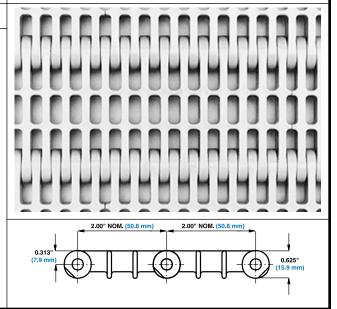
A Top surface of dead plate

B Dead plate gap


Sprocket Description			Gap		
Pitch Diameter		No. Teeth	in	mm	
in	mm	No. reeur	""	mm	
2.0	51	6	0.134	3.4	
3.5	89	11	0.073	1.9	
6.1	155	19	0.041	1.0	


Product Notes

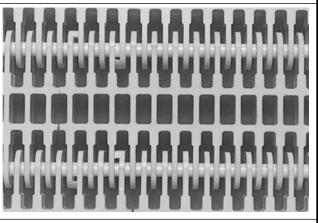
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Large, open area allows excellent drainage.
- Has double-headed hinge rods, so the belt edge is not
- Low-profile, transverse ridges help move products up or down inclines.
- Flights and sideguards are available.

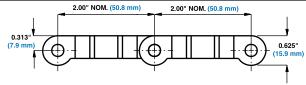

Belt Data								
Belt material	Standard rod material Ø 0.240 in (6.1 mm)	Belt strength		Temperature range (continuous)		Belt weight		
		lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	
Polypropylene	Polypropylene	1400	2080	34 to 220	1 to 104	1.24	6.05	
Polyethylene	Polyethylene	900	1340	-100 to 150	-73 to 66	1.26	6.15	

		Flush		
	in	mm		
Pitch	2.00	50.8		
Minimum Width	2	51		
Width Increments	0.36	9.1		
Opening Size (approximate)	0.22×0.49	5.5 × 12.5		
Open Area	33%			
Hinge Style	Closed			
Drive Method	Hinge-driven			
Rod Retention; Rod Type	Second headed; heade			

Product Notes

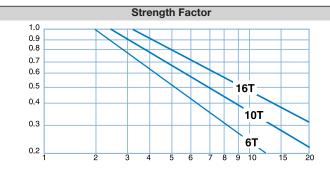
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Flush Grid pattern with smooth upper surface
- Provides excellent lateral movement of containers
- One of the strongest S200 belt styles
- Uses double-headed hinge rods, so the belt edge is not fully flush
- For more material selections, see Series 400, Series 900, Series 1100, and Series 2200 belt styles.
- Flights and sideguards are available.


Belt Data								
Belt material	Standard rod material Ø 0.240 in (6.1 mm)	Belt strength		Temperature range (continuous)		Belt weight		
		lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	
Polypropylene	Polypropylene	1800	2680	34 to 220	1 to 104	1.40	6.83	
Polyethylene	Polyethylene	1200	1790	-100 to 150	-73 to 66	1.44	7.03	

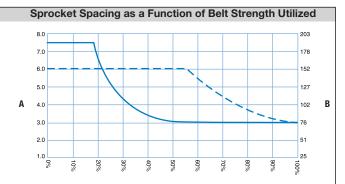


		Open H
	in	mm
Pitch	2.00	50.8
Minimum Width	2	51
Width Increments	0.36	9.1
Opening Size (approximate)	0.26×0.48	6.7 × 12.3
Open Area	45	%
Hinge Style	Ор	en
Drive Method	Hinge-	driven
Rod Retention; Rod Type	Second head	ded; headed

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a helt
- Provides a smooth surface and a generous open area for food handling.
- Uses double-headed hinge rods, so the belt edge is not fully flush.
- Ideal where air cooling, washing, or drying is required.
- For stronger belt performance, see *Series 400 Open Hinge*.
- Flights and sideguards are available.



Belt Data							
Belt material	Standard rod material Ø 0.240 in (6.1 mm)	Belt strength Temperature range (continuous)		•	Belt weight		
	0.240 iii (6.1 11iiii)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
Polypropylene	Polypropylene	300	450	34 to 220	1 to 104	1.04	5.08
Polyethylene	Polyethylene	200	300	-50 to 150	-46 to 66	1.12	5.47


	Sprocket and Support Quantity Reference									
Belt Wic	dth Range ¹	Minimum Number of	W	earstrips						
in	mm	Sprockets Per Shaft ²	Carryway	Returnway						
2	51	1	2	2						
4	102	1	2	2						
6	152	2	2	2						
7	178	2	2	2						
8	203	2	2	2						
10	254	2	3	2						
12	305	3	3	2						
14	356	3	3	3						
15	381	3	3	3						
16	406	3	3	3						
18	457	3	3	3						
20	508	3	4	3						
24	610	5	4	3						
30	762	5	5	4						
32	813	5	5	4						
36	914	5	5	4						
42	1067	7	6	5						
48	1219	7	7	5						
54	1372	9	7	6						
60	1524	9	8	6						
72	1829	11	9	7						
84	2134	13	11	8						
96	2438	13	12	9						
120	3048	17	15	11						
144	3658	21	17	13						
For other w	vidths, use an o	dd number of sprockets at	Maximum 9 in (229 mm) centerline	Maximum 12 in (305 mm) centerline						
		nm) centerline spacing.3	spacing	spacing						

Speed/length ratio (V/L)

Divide belt speed (V) by the shaft centerline distance (L). Strength Factor is found at intersection of the speed/length ratio and the appropriate sprocket line. See Belt Selection Instructions for more information.

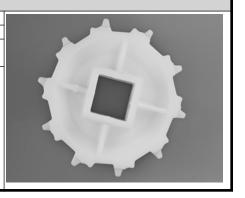
V = ft/min (m/min); T = number of teeth; L = ft (m)

Percentage of allowable belt strength utilized

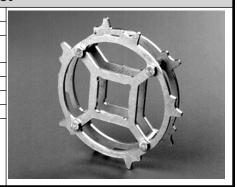
- A Sprocket spacing, in
- Sprocket spacing, mm

Dashed line: double-wide sprocket Solid line: all other sprockets

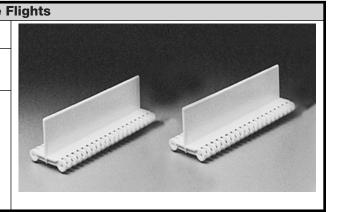
¹ If belt width exceeds a number listed in the table, see the sprocket and support material minimums for the next larger width range. Belts are available in 0.36 in (9.1 mm) increments beginning with minimum width of 2 in (51 mm). If the actual width is critical, contact Intralox Customer Service.


² This number is a minimum. Heavy-load applications can require additional sprockets.

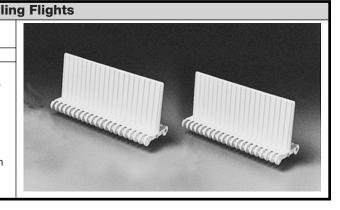
³ Lock down the center sprocket. With only two sprockets, fix the sprocket on the drive journal side only. For lockdown location, see Retainer Rings/Center Sprocket Offset.


							Molde	d Spro	cket	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A۱	/ailable B	ore Size	S
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in	in	mm	mm
6	4.0	102	3.9	99	1.5	38		1.5		40
(13.40%)										
10	6.4	163	6.4	163	2.5	64		1.5		40
(4.89%)								2.5		60
16	10.1	257	10.3	262	2.5	64		1.5		40
(1.92%)								2.5		

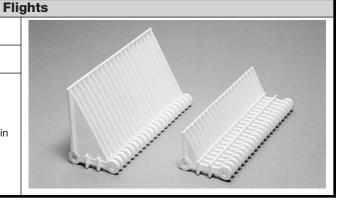
	Double Wide Rim Sprocket									
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A۱	/ailable E	ore Size	S
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in	in	mm	mm
10	6.4	163	6.4	163	2.5	64		1.5		40
(4.89%)										
	l		1						1	1



					M	etal Al	orasion	Resis	tant S	procke
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable B	ore Size	S
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in	in	mm	mm
10	6.4	163	6.4	163	1.1	28		1.5		40
(4.89%)								2.5	1	60
16	10.1	257	10.3	262	1.1	28		1.5		40
(1.92%)								2.5	1	60
									1	65
		1								


		Streamline				
Available f	light height	Available Materials				
in	mm	Available Materials				
1	25					
2	51	Polypropylene, polyethylene				
3	76					

- Each flight rises out of the center of its supporting Flat Top module, molded as an integral part. No fasteners are required.
- An extension can be welded at a 45-degree angle to create a bent flight. Contact Intralox Customer Service for availability.
- Can be enlarged to 6 in (152 mm) high with a welded extension.
- Minimum indent without sideguards: 0.7 in (18 mm).
- Flights can be cut down to custom heights. Minimum height: 0.25 in (6.4 mm).


		Double No-Cl
Available I	Flight Height	Available Materials
in	mm	Available Materials
3	76	Polypropylene, polyethylene

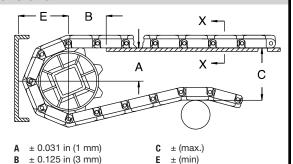
- Vertically ribbed for product release.
- Each flight rises out of the center of its supporting Flat Top module, molded as an integral part. No fasteners are required.
- An extension can be welded at a 45-degree angle to create a bent flight. Contact Intralox Customer Service for availability.
- Can be enlarged to 6 in (152 mm) high with a welded extension.
- Minimum indent without sideguards is 0.7 in (18 mm).
- Flights can be cut down to custom heights. Minimum height: 0.25 in (6.4 mm).

Ribbed		
Available Materials	light Height	Available F
Available Materials	mm	in
Polypropylene, polyethylene	32	1.25
Folypropylerie, polyetilylerie	76	3
<u> </u>		

- Each flight rises out of an Open Grid module and has a triangularshaped buttress on the back side. No fasteners are required.
- Can be enlarged to 6 in (152 mm) high with a welded extension.
- Minimum indent without sideguards: 0.7 in (18 mm).
- Flights can be cut down to custom heights. Minimum height: 0.25 in (6.4 mm).

		Sidegua
Availab	le Sizes	Available Materials
in	mm	Available Waterials
2	51	
3	76	Polypropylene, polyethylene
4	102	or orypropylerie, poryettrylerie
6	152	
 Standard si 	doguard orientat	tion is analod inward toward the product

- Standard sideguard orientation is angled inward toward the product.
 If needed, sideguards can be angled outward toward the conveyor.
- Minimum indent: 0.7 in (18 mm).
- Normal gap between the sideguards and the edge of a flight: 0.3 in (8 mm).

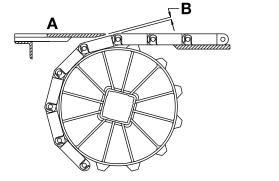


Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in anv design.

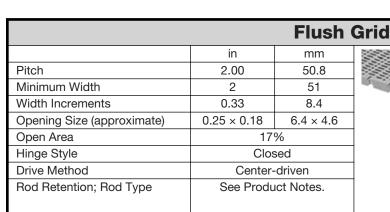
For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

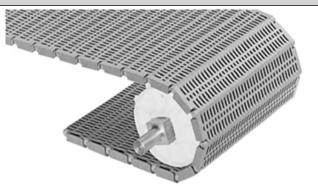
For complete descriptions of the dimensions, see Basic Conveyor Frame Requirements.

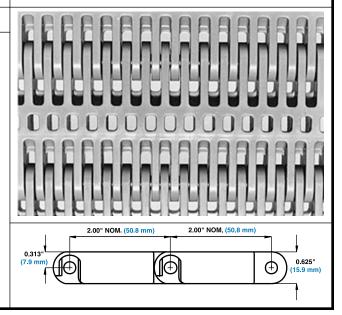

Sprocket Description			Α		E	3	С		E	
Pitch D	Diameter	No. Teeth	Teeth Range (Bottom to Top) in mm		in	mm	in	mm		
in	mm	No. reeur			""	111111	""	111111	""	mm
	•		Series 200 Flus	h Grid, Open Gr	id, Open H	linge		•		
4.0	102	6	1.42-1.69	36-43	2.20	56	4.10	104	2.38	60
6.4	163	10	2.77-2.92	70-74	3.00	76	6.50	165	3.61	92
10.1	257	16	4 72-4 81	120-122	3.20	81	10.20	259	5.50	140

Dead Plate Gap

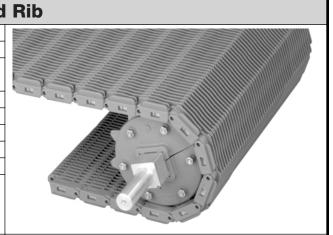
A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.


When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.

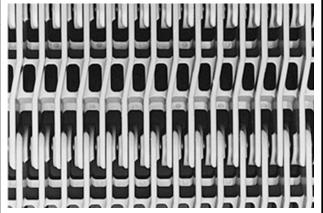

Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.

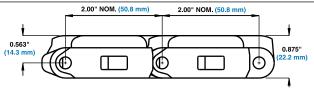

- A Top surface of dead plate
- B Dead plate gap

	Sprocket Description	Ga	р	
Pitch D	iameter	No. Teeth	in	mm
in	mm	No. reeur	ın	
4.0	102	6	0.268	6.8
6.4	163	10	0.160	4.1
10.1	257	16	0.100	2.5

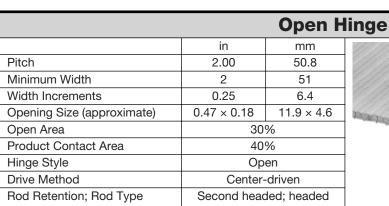


- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Smooth upper surface and straightforward design provide free product movement.
- Uses headed rods for belts without Slidelox rod retention. Uses unheaded rods for belts with Slidelox rod retention.
- Flights and sideguards are available.
- Slidelox rod retention is recommended for belts 6.0 ft (1829 mm) wide and wider.

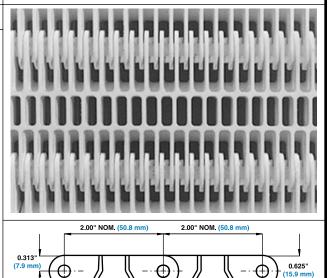



Belt Data											
Belt Material	Standard Rod Material Ø 0.24 in (6.1 mm)	Belt St	rength	Temperati (contir	ure Range nuous)	Belt W	/eight				
	0.24 (6.1 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²				
Polypropylene	Polypropylene	2400	3570	34 to 220	1 to 104	1.82	8.89				
Polyethylene	Polyethylene	1800	2680	-100 to 150	-73 to 66	1.90	9.28				
Acetal	Polypropylene	3200	4760	34 to 200	1 to 93	2.77	13.51				
Acetal ¹	Polyethylene	3000	4460	-50 to 70	-46 to 21	2.77	13.51				

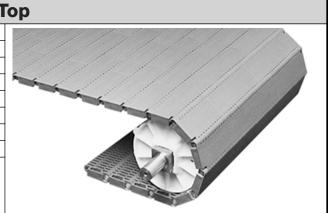
		Raised			
	in	mm			
Pitch	2.00	50.8			
Minimum Width	Soo Brodu	et Notos			
Width Increments	See Product Notes.				
Opening Size (approximate)	0.25 × 0.24	6.4 × 6.1			
Open Area	26	%			
Product Contact Area	36	%			
Hinge Style	Clos	sed			
Drive Method	Center-	-driven			
Rod Retention; Rod Type	See Product Notes.				



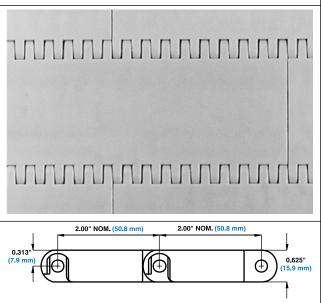
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- All S400 Raised Rib polyethylene belts use headed rods.
- All S400 Raised Rib polypropylene belts use the Slidelox rod retention system and unheaded rods. Slidelox are glass-reinforced polypropylene. For improved chemical resistance, Slidelox are also available in polyvinylidene (PVDF) for Enduralox polypropylene belts.
- Use with finger transfer plates to reduce tippage at infeed and discharge.
- Raised Ribs extend 0.25 in (6.4 mm) above basic module.
- Custom-built in widths from 1.8 in (47 mm) and up for polyethylene and 3.5 in (89 mm) and up for polypropylene, in 0.33 in (8.4 mm) increments.



Belt Data											
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt st	rength	Temperat (contir	ure range nuous)	Belt w	/eight				
	0.24 1 (6.1 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²				
Polypropylene	Polypropylene	2400	3570	34 to 220	1 to 104	1.95	9.52				
Polyethylene	Polyethylene	1800	2680	-100 to 150	-73 to 66	1.98	9.67				
Enduralox polypropylene	Polypropylene	2400	3570	34 to 220	1 to 104	1.95	9.52				

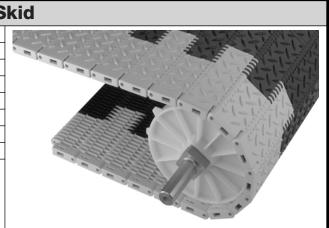

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Large, open area improves airflow, drainage, and cleanability.
- Shares heavy-duty rating with other belts in this series.
- Has double-headed hinge rods, so the belt edge is not fully flush.
- Flights and sideguards are available.

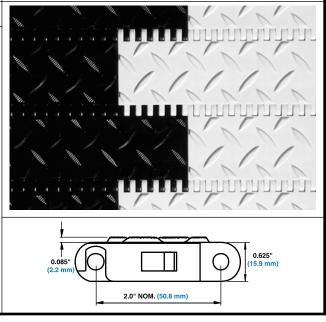
Belt Data										
Belt material	Standard rod material Ø			Temperature range (continuous)		Belt weight				
	0.24 in (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²			
Polypropylene	Polypropylene	1550	2300	34 to 220	1 to 104	1.16	5.66			
Polyethylene	Polyethylene	950	1400	-50 to 150	-46 to 66	1.24	6.06			


		Flat 1
	in	mm
Pitch	2.00	50.8
Minimum Width	2	51
Width Increments	0.33	8.4
Opening Size (approximate)	-	-
Open Area	09	%
Hinge Style	Clos	sed
Drive Method	Center-	-driven
Rod Retention; Rod Type	See Produ	ıct Notes.

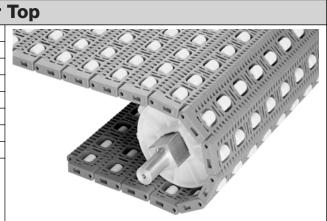
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Smooth upper surface and straightforward design provide free product movement.
- Use abrasion resistant split sprockets with acetal Series 400 Flat Top.
- Use headed rods for belts without Slidelox rod retention. Use unheaded rods with Slidelox rod retention.
- Flights and sideguards are available.

SERIES 400

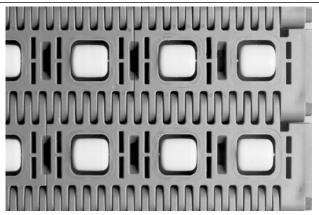

 Slidelox rod retention is recommended for belts 6.0 ft (1829 mm) wide and wider. All S400 Flat Top with abrasion resistant rods are available with Slidelox rod retention.

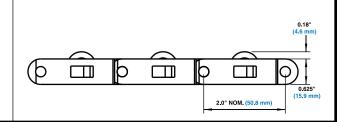

Belt Data											
Belt Material	Standard Rod Material Ø 0.24 in (6.1 mm)	Belt St	rength		ure Range nuous)	Belt W	/eight				
	9 0.24 1 (6.1 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²				
Polypropylene	Polypropylene	2400	3570	34 to 220	1 to 104	1.81	8.82				
Polyethylene	Polyethylene	1800	2680	-100 to 150	-73 to 66	1.90	9.28				
Acetal	Polypropylene	3200	4760	34 to 200	1 to 93	2.74	13.38				
Acetal ¹	Polyethylene	3000	4460	-50 to 70	-46 to 21	2.74	13.38				

		Non S
	in	mm
Pitch	2.00	50.8
Minimum Width	3.5	89
Width Increments	0.33	8.4
Opening Size (approximate)	-	-
Open Area	09	%
Hinge Style	Clos	sed
Drive Method	Center-	-driven
Rod Retention; Rod Type	Slidelox; ι	unheaded



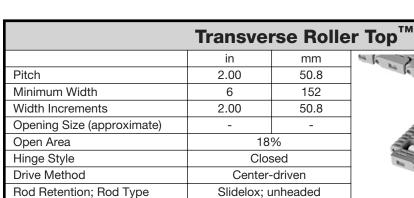
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a helt
- Among highest strength rating of all Intralox belts.
- Slidelox are glass-reinforced polypropylene.
- Contact Intralox Customer Service for flight availability.

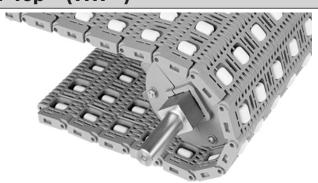



Belt Data										
Belt material	Standard rod material Ø			Temperature range (continuous)		Belt weight				
	0.24 in (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²			
HSEC acetal	Nylon	2720	4040	-50 to 200	-46 to 93	2.88	14.09			
Polypropylene	Polypropylene	2400	3571	-34 to 220	1 to 104	1.81	8.84			

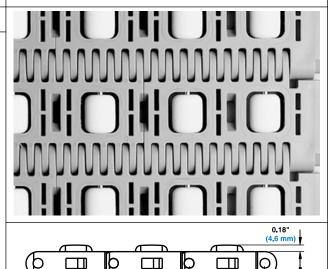
		Roller	
	in	mm	
Pitch	2.00	50.8	
Minimum Width	6	152	
Width Increments	2.00	50.8	
Opening Size (approximate)	-	-	
Open Area	18	%	
Hinge Style	Clos	sed	
Drive Method	Center	-driven	
Rod Retention; Rod Type	Slidelox; unheaded		

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- · Uses acetal rollers.
- Uses stainless steel axles.
- Flush edges.
- Slidelox are glass-reinforced polypropylene.
- Allows for low back pressure accumulation.
- Roller diameter 0.70 in (17.8 mm). Roller length 0.825 in (20.9 mm).
- Standard roller indent is 0.90 in (23 mm)
- Distance to centerline of first roller is 1.3 in (33 mm), spacing between first and second roller is 1.8 in (46 mm). Spacing between all other rollers is 2 in (50.8 mm).

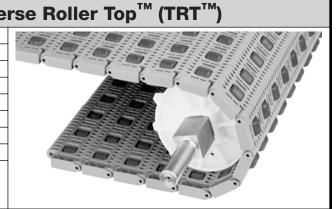




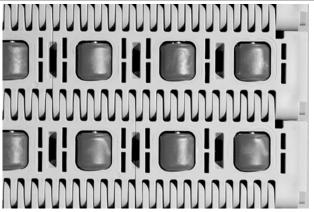
Belt Data										
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt strength		Temperature range (continuous)		Belt weight				
	0.24 (0.1 (1)(1)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²			
Polypropylene	Nylon	2200	3270	34 to 200	1 to 93	2.44	11.94			

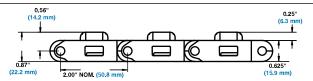

0.625

2.0" NOM. (50.8 mm)

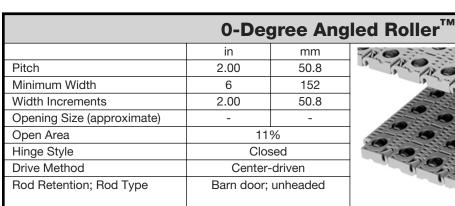


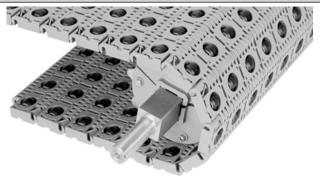
- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Flush edges.
- Uses acetal rollers.
- · Uses stainless steel axles.
- Slidelox are glass-reinforced polypropylene.
- Stainless steel axles provide durability and long-lasting performance.
- Designed for 90-degree transfers.
- Roller diameter: 0.70 in (17.8 mm).
- Roller length: 0.825 in (20.9 mm).
- Roller spacing: 2 in (50.8 mm).
- Standard roller indent: 0.90 in (23 mm).
- Distance to centerline of first roller: 1.3 in (33 mm).
- Spacing between first and second roller: 1.8 in (46 mm).
- Spacing between all other rollers: 2 in (50.8 mm).

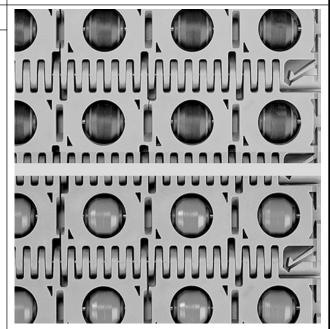


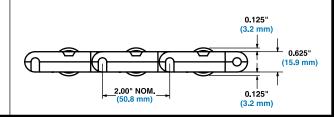

Belt Data										
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt strength		Temperature range (continuous)		Belt weight				
	0.24 1 (6.1 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²			
Polypropylene	Nylon	2200	3270	34 to 200	1 to 93	2.44	11.94			

0.85-in	Diameter	Transve	
	in	mm	
Pitch	2.00	50.8	
Minimum Width	6	152	
Width Increments	2.00	50.8	
Opening Size (approximate)	-	-	
Open Area	18	%	
Hinge Style	Clos	sed	
Drive Method	Center-driven		
Rod Retention; Rod Type	Slidelox; u	ınheaded	

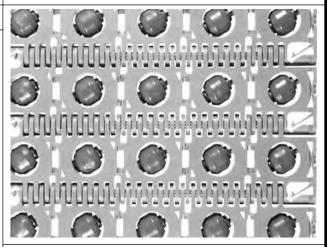


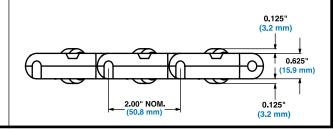

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- · Uses acetal rollers.
- Uses stainless steel axles.
- Slidelox flush edges.
- Slidelox are glass-reinforced polypropylene.
- Stainless steel axles provide durability and long-lasting performance.
- Designed for 90-degree transfers.
- Roller diameter: 0.85 in (21.6 mm).
- Roller length: 0.825 in (20.9 mm).
- Standard roller indent: 0.90 in (23 mm)
- Distance to centerline of first roller: 1.3 in (33 mm).
- Spacing between first and second roller: 1.8 in (46 mm).
- Spacing between all other rollers: 2 in (50.8 mm).




Belt Data							
Belt material Standard rod material Ø 0.24 in (6.1 mm)	Belt st	trenatn i '		ure range nuous)	Belt weight		
	0.24 III (6.1 IIIIII)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
Polypropylene	Nylon	2200	3270	34 to 200	1 to 93	2.81	13.71

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Uses Activated Roller Belt™ (ARB ™) technology.
- Black or gray polyurethane rollers are available.
- Black polyurethane rollers are not recommended for product accumulations.
- All rollers have an acetal core.
- · Axles are stainless steel.
- Rollers are inline with the direction of belt travel.
- Can run on a standard flat continuous carryway. A chevron carryway is not recommended.
- When belt rollers are in motion, product moves faster than the speed of the belt. When belt rollers are not in motion, product travels at belt speed.
- Product behavior varies depending on shape and weight of product, conveyor design, and belt speed.
- Intralox can help you reach a more accurate estimate of product behavior based on product and conveyor characteristics. Contact Intralox Customer Service for more information.
- Custom belts with any combination of 0-degree, 30degree, 45-degree, or 60-degree angled rollers are available. Custom belts can also include rollers oriented in different directions. Contact Intralox Customer Service for more information.
- 2.0 in (50.8 mm) roller spacing.
- Not compatible with the 4.0 in (102 mm) pitch diameter split sprocket or all 5.2 in (132 mm) pitch diameter sprockets with 2.5 in or 60-mm square bores.

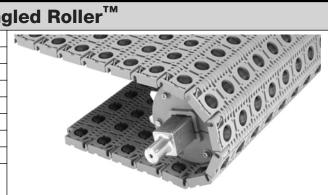


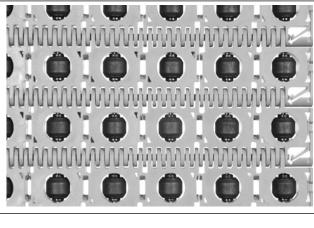

Belt Data							
Belt Material	Standard Rod Material Ø 0.24 in (6.1 mm)	Belt St	rength	•	ure Range nuous)	Belt V	Veight
		lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
Polypropylene/Black Polyurethane	Nylon	1600	2381	34 to 200	1 to 93	2.65	12.94
Polypropylene/Gray Polyurethane	Nylon	1600	2381	34 to 120	1 to 49	2.73	13.33

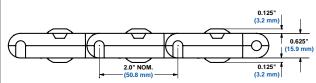
	gree An	
in	mm	
2.00	50.8	
6	152	
2.00	50.8	
-	-	
119	%	
Clos	sed	
Center-driven		
Barn door; unheaded		
	6 2.00 - 11! Clos Center-	

gled Roller™

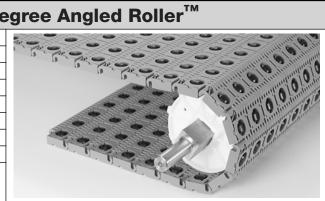
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- · Uses Activated Roller Belt (ARB) technology.
- Rollers are skewed 30 degrees from the direction of belt travel.
- Gray polyurethane rollers with an acetal core are available.
- Gray polyurethane rollers can run on a standard flat continuous carryway. A chevron carryway is not recommended.
- Uses stainless steel axles.
- When belt rollers are in motion, product moves faster than the speed of the belt. When belt rollers do not rotate, product travels at belt speed.
- Product behavior varies depending on shape and weight of product, conveyor design, and belt speed. Intralox can help you estimate product behavior based on product and conveyor characteristics. Contact Intralox Customer Service for more information.
- Centering configuration is possible using two belts with rollers oriented towards the center of the conveyor.
- Custom belts with any combination of 0-degree, 30-degree, 45degree, or 60-degree angled rollers are available. Custom belts can also include rollers oriented in different directions. Contact Intralox Customer Service for more information.
- Belt can be supported using parallel wearstrips placed in between belt rollers. Contact Intralox Customer Service for more information.
- Alignment belts on a flat, continuous carryway require a side wearstrip. Install the belt to run flush along this wearstrip.
- Polyethylene belts require ultra abrasion resistant polyurethane sprocket on the drive shaft. Any sprocket can be used on the idle shaft except for sprockets with low back tension teeth.
- 2 in (50.8 mm) roller spacing.
- Minimum belt width for polyethylene is 8 in (203 mm).
- Polyethylene belts between 8 in (203 mm) to 10 in (254 mm) wide must be derated to 450 lb/ft. (670 kg/m).
- Not compatible with the 4.0 in (102 mm) pitch diameter split sprocket
- Not compatible with all 5.2 in (132 mm) pitch diameter sprockets with 2.5 in or 60 mm square bores.
- If any moisture is present, the low-temperature limit of the polyethylene belt is 34° F (1° C).

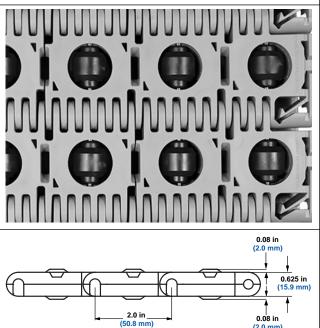



Belt Data							
Belt Material	Standard Rod Material Ø 0.24 in (6.1 mm)	Belt St	rength	•	ure Range nuous)	Belt W	/eight
	0.24 (11 (6.1 11111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
Polypropylene/Gray Polyurethane	Nylon	1600	2381	34 to 120	1 to 49	2.64	12.89
Polyethylene/Gray Polyurethane	Nylon	500	744	17 to 150	-8 to 65	2.93	14.31



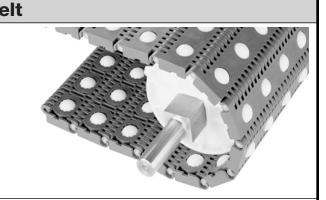
	90- D e	gree An	
	in	mm	
Pitch	2.00	50.8	
Minimum Width	6	152	
Width Increments	2.00	50.8	
Opening Size (approximate)	-	-	
Open Area	11	%	
Hinge Style	Clos	sed	
Drive Method	Center-driven		
Rod Retention; Rod Type	Barn door;	unheaded	

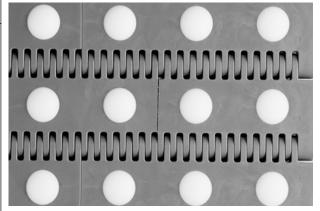

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Black polyurethane rollers with an acetal core are available.
- Black polyurethane rollers are not recommended for product accumulation conditions.
- Do not allow black polyurethane rollers to contact flat, continuous carryways or chevron carryways.
- Axles are stainless steel.
- Belt can be supported using parallel wearstrips placed between belt rollers. Contact Intralox Customer Service for more information.
- Roller spacing is 2.0 in (50.8 mm).
- Not compatible with the 4.0 in (102 mm) pitch diameter split sprocket.
- Not compatible with all 5.2 in (132 mm) pitch diameter sprockets with 2.5 in and 60-mm square bores.

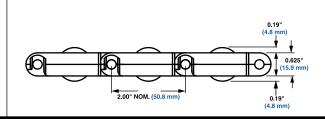


Belt Data							
Belt Material	Belt Material Standard Rod Material Ø 0.24 in (6.1 mm)	Belt St	rength	Temperature Range (continuous)		Belt Weight	
	0.24 1 (0.1 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
Polypropylene/Black polyurethane	Nylon	1600	2381	34 to 200	1 to 93	2.65	12.94

0.78-i	n Diamet	er 90- D e	
	in	mm	
Pitch	2.0	50.8	
Minimum Width	6	152.4	
Width Increments	2.0	50.8	
Opening Size (approximate)	-	-	
Open Area	11	%	
Hinge Style	Clos	sed	
Drive Method	Center-driven		
Rod Retention; Rod Type	Barn door;	unheaded	

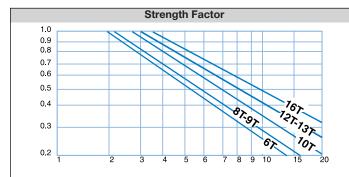

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Black acetal rollers are available.
- Axles are stainless steel.
- Roller spacing is 2.0 in (50.8 mm).
- Not compatible with the 4.0 in (102 mm) pitch diameter split sprocket.
- Not compatible with all 5.2 in (132 mm) pitch diameter sprockets with 2.5 in and (60 mm) square bores.


Belt Data							
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt st	rength		ure range nuous)	Belt w	/eight
	0.24 (1 (6.1 11(11))	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
Polypropylene/Black acetal	Nylon	1600	2381	34 to 200	1 to 93	2.65	12.94

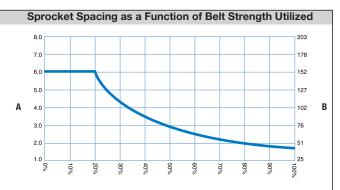


		Ball B	
	in	mm	
Pitch	2.00	50.8	
Minimum Width	10	254	
Width Increments	2.00	50.8	
Opening Size (approximate)	-	-	
Open Area	09	%	
Hinge Style	Clos	sed	
Drive Method	Center-driven		
Rod Retention; Rod Type	Snap-lock; headed		

- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Uses acetal balls.
- Balls protrude beyond top and bottom of belt. Module does not contact carryway.
- · Product movement is controlled by driving balls with a perpendicular secondary conveyor, underneath the main belt.
- Product moves faster than belt speed.
- Product speed varies, depending on shape and weight of product.
- A flat continuous carryway is required.
- For applications requiring product redirection, alignment, transfer, diverting, palletizing, orientation, accumulation, or justification.
- Install alignment configurations to run flush along the side
- · Self-set retaining rings for locking sprockets are not recommended.
- Ball diameter: 1.0 in (25.4 mm).
- Space between balls: 2 in (50.8 mm).
- Standard ball indent: 1.1 in (27.9 mm).
- Rod centerline to top or bottom of module: 0.313 in (7.9
- Rod centerline to top or bottom of ball: 0.50 in (12.7 mm).



Belt Data							
Belt Material	Standard Rod Material Ø 0.24 in (6.1 mm)	Belt St	rength ¹	Temperat (conti	ure Range nuous)	Belt W	/eight
	Ø 0.24 III (0.1 IIIIII)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
Acetal	Polypropylene	2400	3571	34 to 200	1 to 93	3.71	18.11


	Sprocket and Support Quantity Reference							
Belt Wic	th Range ¹	Minimum Number of		earstrips				
in	mm	Sprockets Per Shaft ²	Carryway	Returnway				
2	51	1	2	2				
4	102	1	2	2				
6	152	2	2	2				
7	178	2	2	2				
8	203	2	2	2				
10	254	2	3	2				
12	305	3	3	2				
14	356	3	3	3				
15	381	3	3	3				
16	406	3	3	3				
18	457	3	3	3				
20	508	5	4	3				
24	610	5	4	3				
30	762	5	5	4				
32	813	7	5	4				
36	914	7	5	4				
42	1067	7	6	5				
48	1219	9	7	5				
54	1372	9	7	6				
60	1524	11	8	6				
72	1829	13	9	7				
84	2134	15	11	8				
96	2438	17	12	9				
120	3048	21	15	11				
144	3658	25	17	13				
		dd number of sprockets at m) centerline spacing.3	Maximum 9 in (229 mm) centerline spacing ⁴	Maximum 12 in (305 mm) centerline spacing.				

Speed/length ratio (V/L)

Divide belt speed (V) by the shaft centerline distance (L). Strength Factor is found at intersection of the speed/length ratio and the appropriate sprocket line. See Belt Selection Instructions for more information.

V = ft/min (m/min); T = number of teeth; L = ft (m)

Percentage of allowable belt strength utilized

- A Sprocket spacing, in
- Sprocket spacing, mm

¹ If belt width exceeds a number listed in the table, see the sprocket and support material minimums for the next larger width range. Flat Top, Flush Grid, and Raised Rib belts are available in 0.33 in (8.4 mm) increments beginning with a minimum width of 2 in (51 mm). The increment for Open Hinge belts is 0.25 in (6 mm). If the actual width is critical, contact Intralox Customer Service.

² This number is a minimum. Heavy-load applications can require additional sprockets.

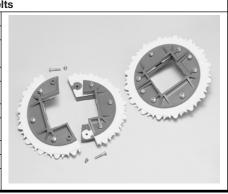
³ Lock down the center sprocket. With only two sprockets, fix the sprocket on the drive journal side only. For lockdown location, see Retainer Rings/Center Sprocket Offset.

⁴ Ball Belt and some Angled Roller belts require a flat continuous carryway.

							Molde	d Spro	cket1	
						For all	belts ex	cept Flu	sh Grid	acetal
No. of	Nom.		Nom.	Nom.	Nom.	Nom.	A	vailable E	Bore Size	S
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square		Square
Action)	in	mm	in	mm	in	mm	in ²	in	mm ²	mm
6	4.0	102	3.6	91	1.5	38		1.5		40
(13.40%)										
8	5.2	132	5.0	127	1.5	38		1.5		40
(7.61%)								2.5		60
10	6.4	163	6.3	160	1.5	38	2.0	1.5	82	40
(4.89%)								2.5		60
(110070)										70
12	7.8	198	7.7	196	1.5	38		1.5		40
(3.41%)								2.5		60
16	10.1	257	10.2	259	1.5	38		1.5		40
(1.92%)								2.5		60
(, -)								3.5		90

		Split	Low	Back	Tensi	on Ultı	ra Abra	asion R	esista	nt Poly
				For all	belts e	xcept Fl	ush Grid	l acetal,	Open H	inge, an
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A ⁻	vailable B	ore Size	S
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in	in	mm	mm
10	6.4	163	6.3	160	1.5	38		1.5		40
(4.89%)								2.5		
12	7.8	198	7.7	196	1.5	38		2.5		
(3.41%)										
16	10.1	257	10.2	259	1.5	38		2.5		
(1.92%)										

			5	Split l	Jitra A	brasio	on Res	istant l	Polyur	ethane	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Α	vailable b	ailable bore sizes		
teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	etric	
(chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	
action)	in	mm	in	mm	in	mm	in	in	mm	mm	
10	6.4	163	6.3	160	1.5	38		1.5		40	
(4.89%)								2.5			


¹ Contact Customer Service for lead times.

² Round bore molded and split sprockets are frequently furnished with two keyways. Use of two keys is NOT REQUIRED nor recommended. Round bore sprockets do not have setscrews for locking the sprockets in place. As with square bore sprockets, only the center-most sprocket must be locked down. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967(R1989) and metric key sizes conform to DIN standard 6885.

³ Contact Customer Service for lead times. When using these sprockets, the maximum Belt Strength for all styles and materials is 1000 lb/ft (1490 kg/m), and the sprocket temperature range is -40 °F (-40 °C) to 160°F (71°C).

⁴ Contact Intralox Customer Service for lead times. When using ultra abrasion resistant polyurethane split sprockets, the maximum belt strength for all styles and materials is 1000 lb/ft (1490 kg/m), and the temperature range for the sprocket is -40°F (-40°C) to 160°F (71°C).

	Mo	olded	Tooth	n Plat	e Spli	t Low	Back T	ension	Polyu	rethan	e Composite Sprocket ¹
					For	all belts	s except	Open Hir	nge and	roller be	Its
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	А	vailable E	Bore Size	s	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	
Action)	in	mm	in	mm	in	mm	in	in	mm	mm	
10	6.4	163	6.3	160	1.70	43		1.5		40	- e
(4.89%)								2.5		60	() P
12	7.8	198	7.7	196	1.5	38		1.5		40	
	7.0	130	7.7	130	1.5	30				60	E O FILE S YN
(3.41%)								2.5		60	
16	10.1	257	10.2	259	1.5	38	3.5	1.5			d'and the
(1.92%)								2.5			
(113270)								3.5		90	

			Mol	ded T	ooth I	Plate S	Split Po	lyuret	hane (Compo	site Sprocket ²
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	ore Size	S	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	BAS
Action)	in	mm	in	mm	in	mm	in	in	mm	mm	Mo
10	6.4	163	6.3	160	1.7	43		1.5		40	0 // 0
(4.89%)											
12	7.8	198	7.7	196	1.5	38		1.5		40	
(3.41%)											
16	10.1	257	10.2	259	1.5	38	4.0	3.5		90	04
(1.92%)											

	Spli	t Met	al wit	h Pol	yuretl	nane (l	FDA) J	oining	Plates	Reduc	ced Clearance Sprocket ³
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	ore Size	S	a h
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	
Action)	in	mm	in	mm	in	mm	in	in	mm	mm	
8	5.2	132	5.0	127	1.5	38		1.5		40	1000
(7.61%)											0 70
10	6.4	163	6.3	160	1.5	38		1.5		40	
(4.89%)								2.5		60	
12	7.8	198	7.7	196	1.5	38		1.5		40	
(3.41%)								2.5		60	7

¹ Contact Intralox Customer Service for lead times. Recommended for drive shaft only. There is very little belt tension when a belt engages the idle sprockets. In some applications, the belt may not have enough tension to engage the added low back tension teeth, causing the belt to disengage on the idle sprockets.

² Contact Intralox Customer Service for lead times.

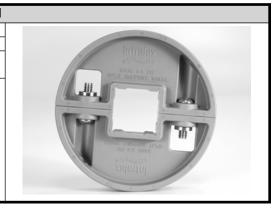
³ Contact Intralox Customer Service for lead times.

	HR Nylon Split Sprockets ¹										
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	ore Size	s	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	
Action)	in	mm	in	mm	in	mm	in	in	mm	mm	
16	10.1	257	10.2	196	2.0	51		2.5		60	
(1.92%)											

							HR Nyl	on Sp	rockets ²	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Av	ailable B	ore Sizes	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.		Metri	0
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round in ³	Square	Round	Square
Action)	in	mm	in	mm	in	mm		in	mm ²	mm
10	6.4	163	6.3	160	1.5	38		1.5		
(4.89%)								2.5		
12	7.8	198	7.7	196	1.5	38		1.5		40
(3.41%)								2.5		60
16	10.1	257	10.2	259	1.5	38		1.5		60
(1.92%)								2.5		90
								3.5		

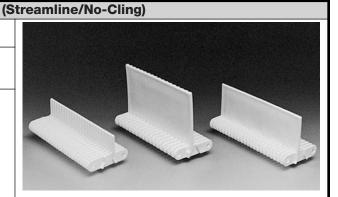
						S	plit Me	tal Spi	ocket ⁴	ŀ
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	/ailable B	ore Sizes	3
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S	3.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in ⁵	in	mm ⁴	mm
6	4.0	102	3.6	91	1.5	38		1.5		40
(13.40%)										
8	5.2	132	5.0	127	1.5	38	1,	1.5	20	40
(7.61%)							1-3/16,		30	60
							1-1/4,		40	
10	0.4	100	0.0	100	4.5		1-7/16	4.5		40
10	6.4	163	6.3	160	1.5	38	1,	1.5	20	40
(4.89%)							1-3/16, 1-1/4,	2.5	40	60
							1-1/4,			
							1-7/16,			
							1-1/2,			
							1-15/16			
12	7.8	198	7.7	196	1.5	38	1-7/16,	1.5	40	40
(3.41%)							1-15/16	2.5		60
16	10.1	257	10.2	259	1.5	38	1-7/16,	1.5		40
(1.92%)							1-15/16	2.5		60
								3.5		90

¹ Contact Intralox Customer Service for lead times. For wet applications, contact Sales Engineering.

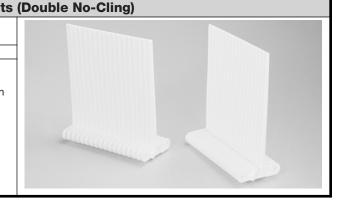

² Contact Intralox Customer Service for lead times.

³ U.S. key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

⁴ Contact Intralox Customer Service for lead times.


⁵ Round bore molded and split sprockets are frequently furnished with two keyways. Use of two keys is NOT REQUIRED nor recommended. Round bore sprockets do not have setscrews for locking the sprockets in place. As with square bore sprockets, only the center-most sprocket must be locked down. U.S. key sizes on round bore sprockets conform to ANSI standard B17.1-1967(R1989) and metric key sizes conform to DIN standard 6885.

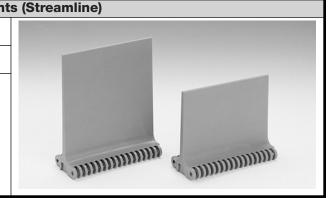
			Sp	lit Suppo	rt Wheel					
Available P	itch Dia.		Available Bore Sizes							
in	mm	U.S	S.	Me	tric					
		Round in	Square in	Round	Square					
				mm	mm					
6.4	163	1	1.5							
			2.5							


		Flush Grid Base Flights					
Available F	light Height	Available Materials					
in	mm	Available Materials					
1	25						
2	51	Polypropylene, polyethylene					
3	76						
Each flight rises out of the center of its supporting module, molded							

- as an integral part. No fasteners are required.
- The Streamline side of the flight is smooth and the No-Cling side is vertically ribbed.
- An extension can be welded at a 45-degree angle for a bent flight.
- Can be cut down to custom heights. Minimum height: 0.25 in (6.4
- Minimum indent without sideguards: 0.8 in (20 mm) and the minimum indent for a Slidelox edge (without sideguards) is 1.4 in (36

		Flush Grid Base Flight
Available F	light Height	Available Materials
in	mm	Available Materials
6	152	Polypropylene, polyethylene

- Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.
- Flights can be cut down to custom heights. Minimum height: 0.25 in
- Minimum indent without sideguards: 0.8 in (20 mm).
- Minimum indent for a Slidelox edge without sideguards: 1.4 in (36
- 45-degree bent flights are available in polypropylene with a 3 in (76 mm) tall base and with a 1 in (25 mm) or 2 in (51 mm) extension.



- Flights rise out of the center of the supporting module, molded as an integral part. No fasteners are required.
- The Streamline side of the flight is smooth and the No-Cling side is vertically ribbed.
- Can be cut down to custom heights. Minimum height: 0.25 in (6.4 mm).
- Flights can be extended to 6 in (152 mm) high (welded extension).
 The extension can also be welded at a 45° angle for a bent flight.
- Minimum indent without sideguards: 0.6 in (15 mm).

		Flat Top Base Fligh
Available Flight Height		Available Materials
in	mm	Available Waterlais
4	102	Polypropylene, polyethylene, acetal
6	152	Folypropylerie, polyetriylerie, acetai

- Flat Top flight is smooth (streamlined) on both sides.
- Flat Top-based flights cannot be used with Flush Grid belts.
- Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.
- Flights can be cut down to custom heights. Minimum height: 0.25 in (6.4 mm).
- Minimum indent without sideguards: 0.8 in (20 mm) Minimum indent for a Slidelox edge without sideguards: 1.4 in (36 mm).

		Sidegua
Available Sizes in mm 2 51 3 76 4 102 6 152	Available Materials	
in	mm	Available Materials
2	51	
3	76	Polypropylene, polyethylene
4	102	
6	152	

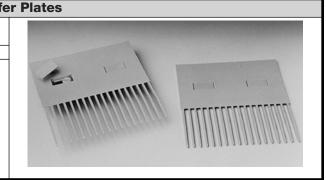
- Sideguards use a standard overlapping design and are an integral part of the belt, with no fasteners required.
- When going around the 6 and 8 tooth sprockets, sideguards fan out, opening a gap at the top of the sideguard that can allow small products to fall out. The sideguards stay completely closed when going around the 10, 12 and 16 tooth sprockets.
- Standard sideguard orientation is angled inward toward the product. If needed, sideguards can be angled outward toward the conveyor.
- Minimum indent is 0.8 in (20 mm).
- Normal gap between the sideguards and the edge of a flight is 0.4 in (10 mm).

Hold Down Tabs

Available on Non Skid and Flat Top belts.

SERIES 400

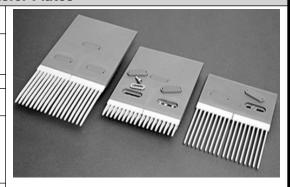
- · Carryway wearstrips or rollers that engage the tabs are only required at the transition between the horizontal sections and angled sections. This approach reduces initial system cost as well as ongoing maintenance cost and effort.
- Ensure that adequate lead-in radii and/or angles are used to prevent the possibility of snagging the tab on the frame.
- A carryway radius should be designed at the transition between horizontal sections and angled sections. This radius must be at least 48 in (1.22 m) for belts that are loaded near the belt strength rating. This radius is one of the most important factors to consider when designing highly loaded conveyors that utilize hold down tabs.
- Tabs can be spaced along the length of the belt at either4 in (101.6 mm) or 6 in (152.4 mm). Tab spacings greater than 6 in (152.4 mm) should be avoided due to the potential of mistracking.
- Strength rating for each hold down tab: 100 lb (45.4 kg) of force perpendicular to the hold down surface.


			li I	nsert Nut	S	
Available	Base Belt Style	- Material	Available Insert Nut			
			Sizes			
Flat Top - Acetal, polypropylene 5/16" - 18 (8 mm - 1.2						
		mm)				
Dalt	Movimum Fi	vturo Woight	Fastener Torque			
Belt	IVIAXIIIIUIII I I	Maximum Fixture Weight		Specification		
Material	lb/nut1	kg/nut ¹	in-lb	N-m		
Acetal	200	91	120	13.5		
Polypropylene	175	79	65	7.3		
					1	

- Insert Nuts allow easy attachment of fixtures to the belt.
- Ensure attachments connected to more than one row do not prohibit belt rotation around the sprockets.
- For attachment bases that extend across multiple rows, ensure reduced backbend is considered during design.
- · Do not place sprockets in-line with insert nuts.
- All nut placement dimensions are referenced from the edge of the belt when placing an order. Contact Intralox Customer Service for nut location options available for application.
- Minimal indent from the edge of the belt: 2 in (50 mm).
- Minimal distance between nuts across the width of the belt: 1.33 in (34
- Spacing along the length of the belt: 2 in (50 mm) increments.

			Finger Transf
Available	Available Widths		Available Materials
in	mm	Fingers	Available ivialeriais
6	152	18	Polypropylene

- Eliminates product transfer and tipping problems. The 18 fingers extend between the belt ribs, allowing a smooth continuation of the product flow as the belt engages the sprockets.
- · Easily installed on the conveyor frame with the supplied shoulder bolts. Caps easily snap into place over the bolts, and keep foreign materials out of the slots.
- The finger transfer plates for Series 400 are the same for Series



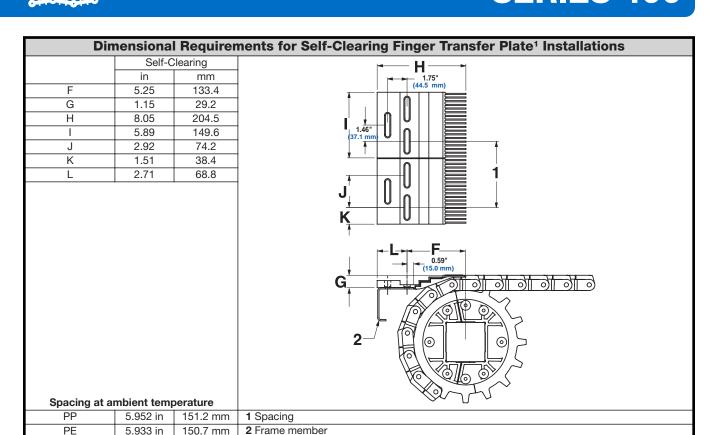
¹ Fixture weight only. Product weight need not be included.

		Two-M	aterial Finger Trans
Α	vailable Widths	No. of	Available Materials
in	mm	Fingers	Available iviaterials
6	152	18	Glass-filled
			thermoplastic fingers,
			acetal backplate
	Available Conf	igurations	
Standard	Standard		Glass-Handling
	Extended Back		
Long	Long fingers with an	Short	fingers with extended
fingers	extended backplate	backplate	e; short fingers with short
with a		backpla	ate1; mid-length fingers
short		with a sh	ort backplate; mid-length
backplate		fingers v	vith extended backplate
Drovidos b	igh atropath fingers combine	d with a la	u friation bookslate

- Provides high-strength fingers combined with a low-friction backplate.
- Eliminates product transfer and tipping problems. The 18 fingers extend between the belt ribs, allowing smooth, continuous product flow as the belt engages the sprockets.
- · Low-friction backplate is permanently attached to the two high-strength finger inserts.
- Plastic shoulder bolts and bolt covers are included for installing the standard two-material finger transfer plates (FTPs).
- Mounting hardware for the glass-handling two-material FTPs is sold separately. Mounting hardware consists of stainless steel oval washers and bolts, which give more secure fastening for tough, glass applications.
- For applications that require better chemical resistance, Introlox offers a single-material polypropylene standard FTP. Mounting hardware for this finger transfer plate includes plastic shoulder bolts and snap-cap bolt
- Long fingers provide good support for unstable products like PET containers and cans. Short fingers are sturdy enough for harsh, brokenglass applications. These fingers are designed to resist breaking, but if confronted with deeply embedded glass, the individual fingers yield and break off, preventing belt or frame damage.
- Short backplate has two attachment slots and the extended backplate has three attachment slots.
- Series 400 and Series 1200 use the same FTPs.
- For best product transfer with the glass-handling finger transfer plates, use 10.1 in (257 mm) PD, 16-tooth sprockets.

sfer Plates

	Dimensional Requirements for Finger Transfer Plate Installations								
				Two-M	aterial				г—— Н ——¬
	Fing Sh	ng	- Exte	dard ingers ended ick	Hand Sh Fing Exte	ass dling ort ers - nded ick	Han Mid L Fing Exte	ass dling ength ers - nded ack	2.25° (57 mm) (38 mm)
	in	mm	in	mm	in	mm	in	mm	
F	3.50	89	3.50	89	3.50	89	3.50	89	
G	0.31	8	0.31	8	0.31	8	0.31	8	j dje je
Н	7.2	183	10.75	273	8.26	210	9.04	230	
I	5.91	150	5.91	150	5.91	150	5.91	150	
J	3.00	76	3.00	76	3.00	76	3.00	76	K - L - F - 2
K	1.45	37	1.45	37	1.45	37	1.45	37	0.5" (13 mm)
L	2.00	51	5.50	140	5.50	140	5.50	140	3
	S	pacing	at Ambi	ent Tem	peratu	re			Two-Material Finger Transfer Plates
PP		5.9	52 in	151.2	mm				Two-material glass handling finger transfer plate shown 1 Spacing
PE		5.9	33 in	150.7	mm				2 0.5 in (13 mm) Radius (leading edge of frame member) 3 Frame member

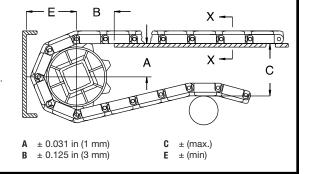

discharge and infeed conveyors.

belt expansion and contraction. • Stainless steel hardware is sold separately.

• Capable of transferring product to and from Intralox Series 400,

• Easily installed and secured to mounting plates of any thickness with stainless steel bolts and oval washers that allow movement with the

Series 1200, and Series 1900 Raised Rib belts. • Robust design for durability in tough, glass applications.



Conveyor Frame Dimensions

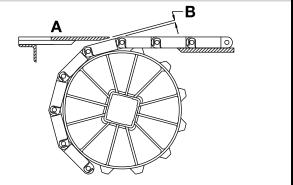
Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in

For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see Basic Conveyor Frame Requirements.

Spi	rocket De	scription	Α		E	3				E
Pitch D	iameter	No Tooth	Range (Bottor	n to Top)	i.a		in		i.a	
in	mm	No. Teeth	in	mm	in	mm	in	mm	in	mm
			Series 400 Flat	Top, Flush Grid	d, Open Hi	nge				
4.0	102	6	1.42-1.69	36-43	2.20	56	4.10	104	2.38	60
5.2	132	8	2.10-2.30	53-58	2.60	66	5.30	135	2.99	76
5.8	147	9 ¹	2.44-2.61	62-66	2.70	69	5.95	151	3.49	89
6.4	163	10	2.77-2.92	70-74	2.77	70	6.50	165	3.61	92
7.8	198	12	3.42-3.55	87-90	3.00	76	7.90	201	4.24	108
8.4	213	13 ¹	3.75-3.87	95-98	3.22	82	8.46	215	4.74	120
10.1	257	16	4.72-4.81	120-122	3.20	81	10.20	259	5.50	140
			Seri	es 400 Raised I	Rib	•			•	
4.0	102	6	1.42-1.69	36-43	2.20	56	4.10	104	2.75	70
5.2	132	8	2.10-2.30	53-58	2.60	66	5.30	135	3.24	82
6.4	163	10	2.77-2.92	70-74	2.77	70	6.50	165	3.99	101
7.8	198	12	3.42-3.55	87-90	3.00	76	7.90	201	4.49	114
10.1	257	16	4.72-4.81	120-122	3.20	81	10.20	259	5.88	149
				ries 400 Non Sk						
4.0	102	6	1.42-1.69	36-43	1.60	41	4.09	104	2.46	62
5.2	132	8	2.10-2.30	53-58	1.98	50	5.31	135	3.07	78
5.8	147	9	2.43-2.61	62-66	2.31	59	5.93	151	3.38	86
6.4	163	10	2.77-2.92	70-74	2.26	57	6.56	167	3.70	94
7.8	198	12	3.42-3.55	87-90	2.60	66	7.81	198	4.32	110
8.4	213	13	3.74-3.87	95-98	2.84	72	8.44	214	4.64	118
10.1	257	16	4.71-4.81	120-122	2.97	75	10.34	263	5.59	142
			Series 400 Roll							
4.0	102	6	1.42-1.69	36-43	2.20	56	4.10	104	2.56	65
5.2	132	8	2.10-2.30	53-58	2.60	66	5.30	135	3.17	81
6.4	163	10	2.77-2.92	70-74	2.77	70	6.50	165	3.79	96
7.8	198	12	3.42-3.55	87-90	3.00	76	7.90	201	4.42	112
10.1	257	16	4.72-4.81	120-122	3.20	81	10.20	259	5.68	144
		1	Series 400 0.85-in							1
4.0	102	6	1.27-1.54	32-39	1.72	44	3.96	101	2.48	63
5.2	132	8	1.95-2.15	50-55	2.13	54	5.18	132	3.09	78
6.4	163	10	2.62-2.77	67-70	2.43	62	6.42	163	3.71	94
7.8	198	12	3.27-3.40	83-86	2.78	71	7.68	195	4.34	110
10.1	257	16	4.56-4.66	116-118	3.20	81	10.20	259	5.60	142
4.0	100		Series 400 Angled Rol					100	0.50	64
4.0	102	6	1.29-1.56	33-40	1.70	43	4.00	102	2.50	64
5.2	132	8 10	1.98-2.18	50-55 67-71	2.11	53	5.23	133	3.11	79
6.4	163		2.64-2.80		2.40	61	6.47	164	3.74	95
7.8	198 257	12 16	3.29-3.43	84-87 117-119	2.75	70	7.73	196	4.36	111 143
10.1	201	10	4.59-4.69		3.16	80	10.25	260	5.63	143
		1	Sei	ries 400 Ball Be	lt _					1
4.0	102	6	1.23-1.50	31-38	1.75	44	4.00	102	2.56	65
5.2	132	8	1.91-2.11	49-54	2.16	55	5.23	133	3.18	81
6.4	163	10	2.58-2.74	65-69	2.47	63	6.47	164	3.80	96
7.8	198	12	3.23-3.36	82-85	2.82	72	7.73	196	4.43	112
10.1	257	16	4.53-4.63	115-117	3.25	82	10.25	260	5.69	144

 $^{^{1}}$ Flush Grid acetal only. 2 To establish dimensions, use the top of the roller as the top of the belt and the bottom of the roller as the bottom of the belt.

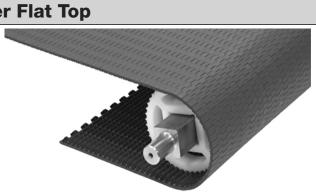


Dead Plate Gap

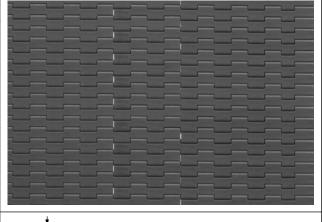
A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

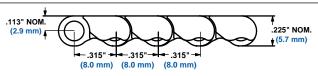
When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.


SERIES 400

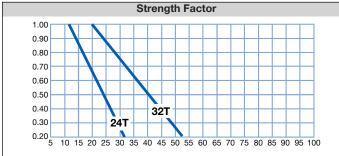
- A Top surface of dead plate
- B Dead plate gap


	Sprocket Description	Ga	р	
Pitch Diameter		No. Teeth	in	mm
in	mm	No. reeur	""	111111
4.0	102	6	0.268	6.8
5.2	132	8	0.200	5.1
5.8	147	9 (Flush Grid acetal)	0.178	4.5
6.4	163	10	0.160	4.1
7.8	198	12	0.130	3.3
8.4	213	13 (Flush Grid acetal)	0.121	3.1
10.1	257	16	0.100	2.5

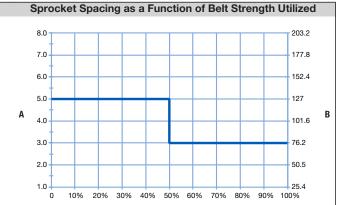


Tigh	t Transfe		
in	mm		
0.315	8.0		
8	203.2		
1	25.4		
09	%		
Ор	en		
Center/hinge			
Occluded edg	ge; unheaded		
	in 0.315 8 1 09 Op		

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Designed for orientation-sensitive transfers.
- Reduced noise at higher speeds, when compared to S1100 Flat Top in acetal and S1500 Flush Grid in acetal.
- Smooth, closed upper surface with fully flush edges.
- Fully sculpted and radiused corners.
- Conveys product over 0.25 in (6.4 mm) diameter nosebar.
- Back tension required: 12 lb./ft. of belt width (17.9 kg/m).
- Standard stainless steel retainer rings are recommended for use with 2.4 in and 3.2 in PD sprockets; corresponding heavy-duty retainer rings can also be used.



Belt Data								
Base belt material	Standard rod material Ø 0.14 in (3.6 mm)	Belt strength			ture range nuous)	Belt weight		
		lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	
Acetal	Acetal	150	220	-50 to 200	-46 to 93	1.10	5.37	
HHR nylon	Nylon	85	126	-50 to 240	-46 to 116	0.85	4.15	


Sprocket and Support Quantity Reference								
Belt Wi	dth Range ¹	Minimum Number of	We	earstrips				
in	mm	Sprockets Per Shaft ²	Carryway	Returnway				
8	203	3	3	3				
9	229	3	3	3				
10	254	4	3	3				
11	279	4	4	3				
12	305	4	4	3				
13	330	4	4	4				
14	356	4	4	4				
15	381	5	4	4				
16	406	5	5	4				
17	432	5	5	4				
18	457	5	5	4				
19	483	5	5	5				
20	508	6	5	5				
24	610	6	6	5				
30	762	8	7	6				
36	914	9	9	7				
42	1067	10	10	8				
48	1219	11	11	9				
54	1372	12	12	10				
60	1524	14	13	11				
66	1676	15	15	12				
72	1829	16	16	13				
78	1981	17	17	14				
84	2134	18	18	15				
90	2286	20	19	16				
96	2438	21	21	17				
120	3048	26	25	21				
156	3962	33	33	27				
For other	widths, use an	odd number of sprockets ³	Maximum 6 in (152 mm) centerline	Maximum 12 in (305 mm) centerline				
			spacing	spacing				

Speed/length ratio (V/L)

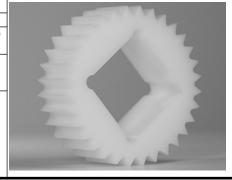
Divide belt speed (V) by the shaft centerline distance (L). Strength Factor is found at intersection of speed/length ratio and appropriate sprocket line. See Belt Selection Instructions for more information.

V = ft/min (m/min); T = number of teeth; L = ft (m)

Percentage of allowable belt strength utilized

- A Sprocket spacing, in
- Sprocket spacing, mm

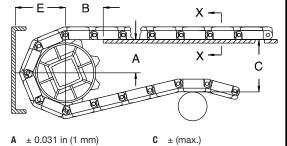
¹ If belt width exceeds a number listed in the table, see the sprocket and support material minimums for the next larger width range. Belts are available in 1.0 in (25.4 mm) increments beginning with a minimum width of 8 in (203.2 mm). If the actual width is critical, contact Intralox Customer Service.


 $^{^{\}mathrm{2}}$ This number is a minimum. Heavy-load applications can require additional sprockets.

³ Lock down the center sprockets. With only two sprockets, fix the sprocket on the drive journal side only. For lockdown location, see Retainer Rings/Center Sprocket Offset.

	EZ Clean [™] Sprocket									
No. of	Nom.	Nom.	1	Nom.	Nom.	Nom.		vailable E		
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in ¹	in	mm	mm
24	2.4	61	2.4	61	1	25	1	1	25	
(0.86%)										
32	3.2	81	3.2	81	1	25		1.5		40
(0.48%)										
,										

	Non-Tracking Sprocket										
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Available Bore Sizes			S	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Metric		
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	
Action)	in	mm	in	mm	in	mm	in	in	mm	mm	
24	2.4	61	2.4	61	1.48	38	1	1	25		
(0.86%)											
32	3.2	81	3.2	81	1.48	38		1.5		40	
(0.48%)											



Conveyor Frame Dimensions

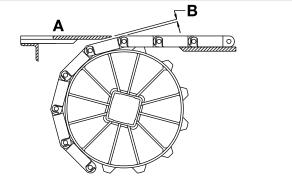
Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in

For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see Basic Conveyor Frame Requirements.

Α	± 0.031 in (1 mm)	C	± (max.
В	± 0.125 in (3 mm)	E	± (min)

Sprocket Description			Α		В		С		É	
Pitch Diameter		No. Teeth	Range (Botton	nge (Bottom to Top)		mm	in	mm	in	mm
in	mm	No. Teetii	in	mm	in		""	111111		
	Series 550 Tight Transfer Flat Top									
2.4	61	24	1.09	28	1.27	32	2.41	61	1.38	35
3.2	81	32	1.49	38	1.51	38	3.21	82	1.78	45


¹ Round bore molded and split sprockets are frequently furnished with two keyways. Use of two keys is NOT REQUIRED nor recommended. Round bore sprockets do not have setscrews for locking the sprockets in place. As with square bore sprockets, only the center-most sprocket must be locked down. U.S. key sizes on round bore sprockets conform to ANSI standard B17.1-1967(R1989) and metric key sizes conform to DIN standard 6885.

Dead Plate Gap

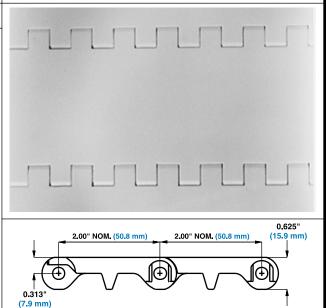
A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.

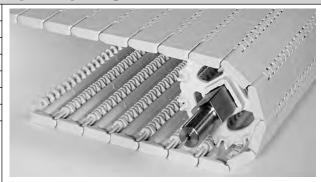
Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.

A Top surface of dead plate

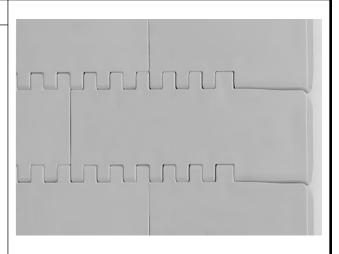
B Dead plate gap

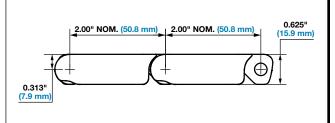

	Sprocket Description	Gap			
Pitch D	iameter	No. Teeth	in	mm	
in	mm	No. Teetii	""		
2.4	61	24	0.028	0.7	
3.2	81	32	0.021	0.5	

		Flat 1	
	in	mm	
Pitch	2.00	50.8	
Minimum Width	2	51	
Width Increments	0.66	16.8	
Opening Size (approximate)	-	-	
Open Area	09	%	
Hinge Style	Op	en	
Drive Method	Center-driven		
Rod Retention; Rod Type	Snap-lock; headed		



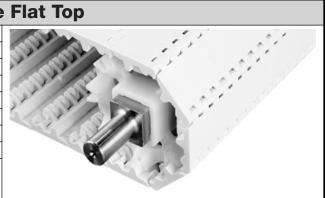
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Smooth, closed upper surface with fully flush edges.
- Impact-resistant belt designed for tough meat industry applications.
- Flights and sideguards are available.

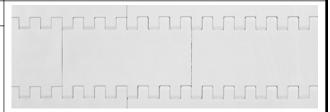


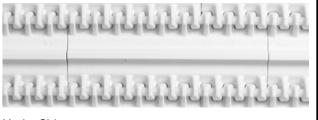

Belt Data								
Relt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt st	rength		ture range nuous) Belt		weight	
	0.24 1 (0.1 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	
Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.77	8.66	
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.87	9.13	
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.75	13.43	
Nylon	Polyethylene	1200	1780	-50 to 150	-46 to 66	2.32	11.33	
Detectable polypropylene A22	Polyethylene	650	967	34 to 150	1 to 66	2.21	10.79	

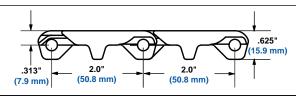
	Flat Top	with He	avy-Duty Edge
	in	mm	(J J 3)
Pitch	2.00	50.8	
Minimum Width	10	254.0	100
Width Increments	0.66	16.8	3442 7777
Open Area	09	%	The state of the s
Hinge Style	Op	en	The Sale of the
Drive Method	Center-	-driven	
Rod Retention; Rod Type	Occluded edg	ge; unheaded	

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Smooth, closed upper surface with fully flush edges.
- Impact-resistant belt designed for tough, meatindustry applications.
- Closed flush edge provides belt robustness and no catch points.
- Fully sculpted and radiused corners, with no pockets or sharp corners that can catch and hold debris.
- Like Series 1600 and Series 1800, the drive bar on the underside of this belt style channels water and debris to the outside of the belt for easier, faster cleanup. The drive bar sweeps into the closed edge to further aid in washing away debris. Drive bar effectiveness is proven both inhouse and in field tests.
- Streamlined flights are available.
- For flight options, contact Intralox Customer Service.




Belt Data							
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt strength		Temperature range (continuous)		Belt weight	
		lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
PK	PK	900	1340	-40 to 220	-40 to 93	2.46	12.01


	Op	en Hinge	
	in	mm	
Pitch	2.00	50.8	
Minimum Width	6	152	
Width Increments	0.66	16.8	
Opening Size (approximate)	-	-	
Open Area	09	%	
Hinge Style	Ор	en	
Drive Method	Center-driven		
Rod Retention; Rod Type	Snap-lock; headed		


- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Smooth, closed upper surface with fully flush edges.
- Cam-link designed hinges expose more hinge and rod area as the belt goes around the sprocket. This exclusive Intralox feature allows unsurpassed cleaning access to this area.
- Fully sculpted and radiused corners, so there are no pockets or sharp corners to catch and hold debris.
- Like Series 1600 and Series 1800, the drive bar channels water and debris to the outside of the belt for easier, faster cleanup. Drive bar effectiveness has been proven both inhouse and in field tests.
- Compatible with industry-proven Series 800 Flat Top. Can be spliced directly into Series 800 Flat Top, using the same sprockets and accessories.
- Streamlined flights are available. Standard height is 6 in (152.4 mm). Flights can also be cut down to custom heights.

Top Side

Under Side

Belt Data							
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt st	rength		ure range nuous)	Belt weight	
	0.24 1 (6.1 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
Polypropylene	Polypropylene	900	1340	34 to 220	1 to 104	1.63	7.96
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.70	8.30
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.52	12.3
PK	PK	900	1340	-40 to 220	-40 to 93	2.46	12.01
X-Ray Detectable Acetal	X-Ray Detectable Acetal	900	1339	-50 to 200	-46 to 93	3.06	14.94

0.313"

(7.9 mm)

8.30

12.3

13.67

2.00" NOM. (50.8 mm)

-46 to 66

-46 to 66

-46 to 66

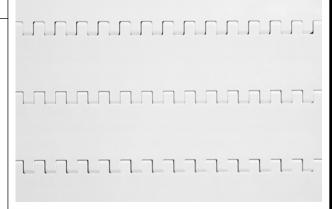
1.70

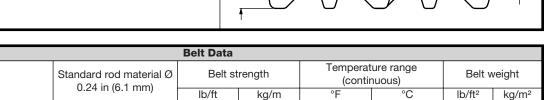
2.52

2.98

		TM	
	SeamFre-	e ^{'™} Open	Hinge Flat Top
	in	mm	5 5 5 5
Pitch	2.00	50.8	13 3
Minimum Width	6	152	A STATE
Width Increments	0.66	16.8	
Opening Size (approximate)	-	-	N AN A
Open Area	09	%	
Hinge Style	Ор	en	
Drive Method	Center-driven		
Rod Retention; Rod Type	Snap-lock; headed		100

SERIES 800


Product Notes


- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Smooth, closed upper surface with fully flush edges.
- Cam-link designed hinges expose more hinge and rod area as the belt goes around the sprocket. This exclusive Intralox feature allows unsurpassed cleaning access to this area.
- Fully sculpted and radiused corners, so there are no pockets or sharp corners to catch and hold debris.
- Like Series 1600 and Series 1800, the drive bar channels water and debris to the outside of the belt for easier, faster cleanup. Drive bar effectiveness has been proven both inhouse and in field tests.
- Compatible with industry-proven Series 800 Flat Top. Can be spliced directly into Series 800 Flat Top, using the same sprockets and accessories.
- Belts over 36 in (914 mm) are built with multiple modules per row, but seams are minimized.
- Streamlined flights are available. Standard height is 6 in (152.4 mm). Flights can also be cut down to custom heights.

Polyethylene

Polyethylene

Blue polyethylene

750

1340

1340

0.625

500

900

900

2.00" NOM. (50.8 mm)

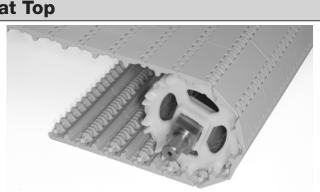
-50 to 150

-50 to 150

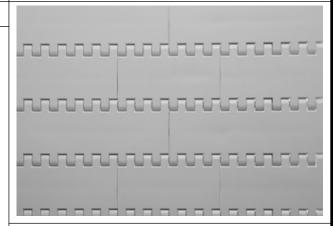
-50 to 150

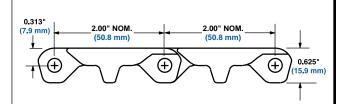
1	Designed	specifically for	detection	by X-ray	machines.

Belt material


Polyethylene

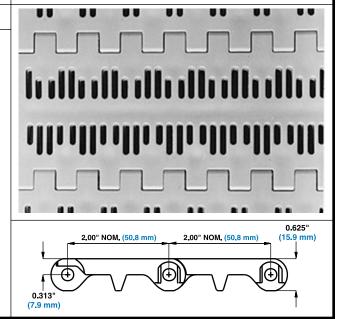
X-Ray Detectable Acetal1


Acetal

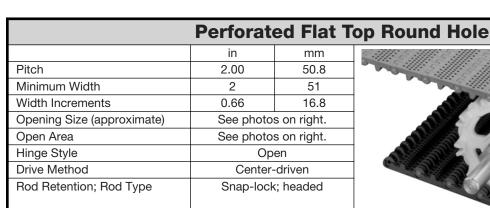


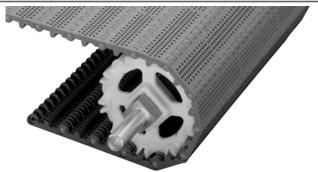
		Tough Fla		
	in	mm		
Pitch	2.00	51.0		
Minimum Width	2	51		
Width Increments	0.66	16.8		
Opening Size (approximate)	-	-		
Open Area	09	%		
Hinge Style	Ор	en		
Drive Method	Center-driven			
Rod Retention; Rod Type	Snap-lock; headed			

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- White and gray material is fully Food and Drug Administration (FDA) and EU MC compliant.
- Smooth, closed upper surface with fully flush edges.
- Withstands extreme impact in food processing applications.
- Cam-link designed hinges expose more hinge and rod area as the belt goes around the sprocket. This exclusive Intralox® feature allows unsurpassed cleaning access to this area.
- Like Series 1600 and Series 1800, the drive bar channels water and debris to the outside of the belt for easier, faster cleanup. Drive bar effectiveness has been proven both inhouse and in field tests.
- Compatible with industry-proven Series 800 Flat Top and Series 800 Open Hinge. Can be spliced directly into both styles, using the same sprockets and accessories.
- Easy retrofit from Series 1800 without extensive conveyor frame changes for most meat industry applications since the A, B, C, and E dimensions are within 0.25 in (6 mm) of Series 1800.
- Streamlined Tough flights are available. Standard height is 4 in or (101.6 mm) or 6 in (152.4 mm). Flights can be cut down to custom heights. A molded-in indent 1.3 in (33 mm) from the edge is available.

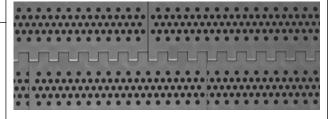


Belt Data							
Belt material Standard rod material Ø 0.24 in (6.1 mm)	Belt strength Te		Temperature range (continuous)		Belt weight		
	0.24 1 (6.1 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
Hi-Impact	Acetal	500	744	0 to 120	-18 to 49	2.26	11.03
Hi-Impact	Polyethylene	450	670	0 to 120	-18 to 49	2.26	11.03

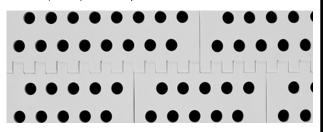

	Pe	rforated	
	in	mm	
Pitch	2.00	50.8	
Minimum Width	2	51	
Width Increments	0.66	16.8	
Min. Opening Size (approx.)	0.29×0.08	7.4 × 1.9	
Max Opening Size (approx.)	0.44 × 0.08	11.1 × 1.9	
Open Area	18	%	
Hinge Style	Op	en	
Drive Method	Center-driven		
Rod Retention; Rod Type	Snap-lock; headed		

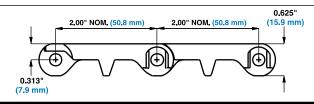

Flat Top

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Smooth upper surface with fully flush edges.
- Perforated version of Series 800 Flat Top.
- Flights and sideguards are available.



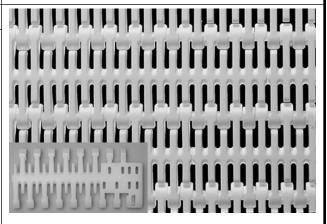
Belt Data								
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt strength		Temperature range (continuous)		Belt weight		
		lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	
Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.54	7.25	
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.59	7.76	
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.28	11.15	



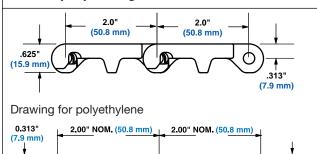

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Smooth upper surface with fully flush edges.
- Round hole versions of Series 800 Perforated Flat Top.
- Stainless steel split sprockets are not recommended.
- For abrasive applications, use with Series 800 polyurethane sprockets.

5/32 in (4 mm) - 20% open area

11/32 in (8.7 mm) - 14% open area

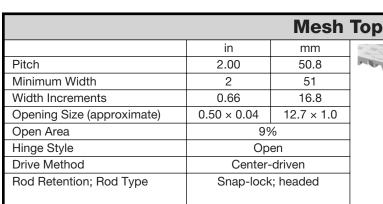


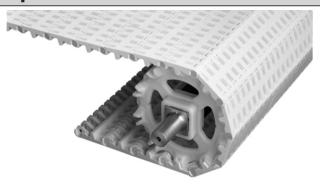
Belt Data									
Belt Material Standard Rod Material Ø 0.24 in (6.1 mm)				Temperature Range (continuous)		Belt Weight			
	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²			
Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.54	7.52		
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.59	7.76		
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.28	11.15		
CRFR ¹	CRFR	900	1339	0 to 150	-18 to 66	2.87	14.01		

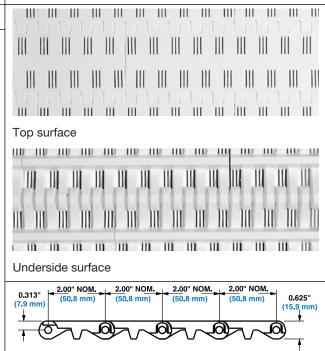

0.625" (15.9 mm)

		Flush	Grid		
	in	mm	,705		
Pitch	2.00	50.8			
Minimum Width	4.6	117			
Width Increments	0.66	16.8			
Opening Size (approximate)	0.15 × 0.90	3.8 × 22.9			
Open Area	279	6			
Product Contact Area	739	6			
Hinge Style	Оре	Open			
Drive Method	Center-				
Rod Retention; Rod Type	Occluded edg	e; unheaded			

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a helt.
- Smooth upper surface with fully flush edges.
- Open slots improve drainage and cleanability.
- Perforations on polyethylene edge modules are slightly different. See inset photo on right.
- Provides excellent drainage during production and cleanup. Hole design eliminates water collecting on belt surface and being carried throughout processing line.
- Bi-directional belt design allows sprockets to drive or idle belt in both directions. Reduces chances of installation error
- Complete range of accessories available, including roundtop flights, flights with drainage bases, and sideguards.

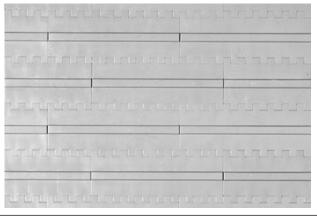


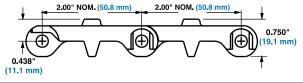

Inset: Polyethylene edge module


Drawing for all other materials

		Belt Data					
Belt material Standard rod material Ø 0.24 in (6.1 mm)				Temperature range (continuous)		Belt weight	
	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	
Polypropylene	Polypropylene	800	1190	34 to 220	1 to 104	1.45	7.08
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.63	7.96
Acetal	Polyethylene	1000	1490	-50 to 150	-46 to 66	2.25	10.99
Acetal	Polypropylene	1000	1490	34 to 200	1 to 93	2.25	10.99
Detectable polypropylene A22	Polypropylene	500	744	34 to 150	1 to 66	1.71	8.35
CRFR	CRFR	1000	1488	0 to 150	-18 to 66	2.83	13.82

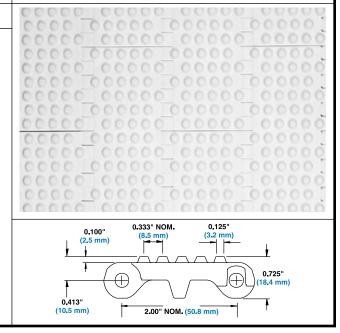
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Smooth, closed upper surface with fully flush edges.
- Flights are available.
- Not compatible with sideguards.



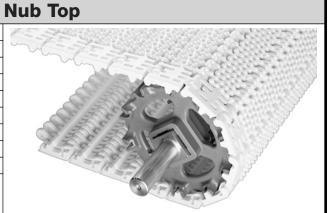

Belt Data									
Relt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt st	rength	Temperat (contir	ure range nuous)	Belt w	eight /		
	0.24 1 (0.1 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²		
Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.60	7.86		

		Mini
	in	mm
Pitch	2.00	50.8
Minimum Width	2	51
Width Increments	0.66	16.8
Opening Size (approximate)	-	-
Open Area	09	%
Hinge Style	Ор	en
Drive Method	Center-	-driven
Rod Retention; Rod Type	Snap-lock	r; headed

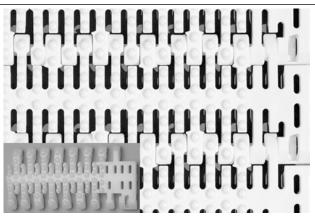
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a helt
- Closed surface with fully flush edges.
- Impact resistant belt designed for tough meat industry applications.
- Not recommended for product accumulation conditions. If values are required, contact Intralox Sales Engineering.
- 0.125 in (3 mm) Mini Rib on surface accommodates gradual inclines and declines.


Belt Data									
Relt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt st	rength		ure range nuous)	Belt w	veight		
	0.24 1 (0.1 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²		
Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.77	8.66		
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.87	9.13		
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.92	14.26		

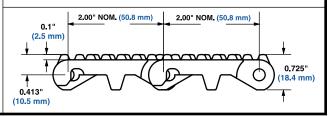
		Nub 1
	in	mm
Pitch	2.00	50.8
Minimum Width	4	102
Width Increments	0.66	16.8
Open Area	09	%
Product Contact Area	15	%
Hinge Style	Ор	en
Drive Method	Center-	-driven
Rod Retention; Rod Type	Snap-lock	; headed



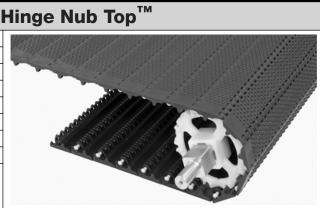
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- · Closed upper surface with fully flush edges.
- Not recommended for product accumulation conditions. If values are required, contact Intralox Sales Engineering.
- Standard flights and sideguards (without nubs) are
- Nub standard indent is 1.3 in (33.0 mm).

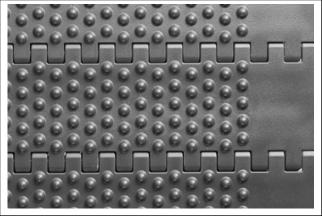


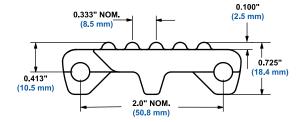
Belt Data									
Belt material Standard rod material Ø	Belt st	rength		ture range nuous)	Belt w	veight			
	0.24 in (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²		
Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.90	9.26		
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	2.01	9.80		
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.95	14.40		


	Flo	ush Grid
	in	mm
Pitch	2.00	50.8
Minimum Width	4.6	117
Width Increments	0.66	16.8
Opening Size (approximate)	0.15×0.90	3.8 × 22.9
Open Area	27	%
Product Contact Area	15	%
Hinge Style	Ор	en
Drive Method	Center-	-driven
Rod Retention; Rod Type	Occluded edg	ge, unheaded

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Manufactured in acetal and polypropylene.
- Perforations on polyethylene edge modules are slightly different. See inset photo.
- Nub pattern reduces contact between belt surface and product.
- Nub pattern is continuous over the surface of the belt, even over the hinges.
- Recommended for products large enough to span the distance between the nubs.
- Compatible with Series 800 Flush Grid flights only.
- Standard Nub indent is 1.3 inches (33.0 mm).

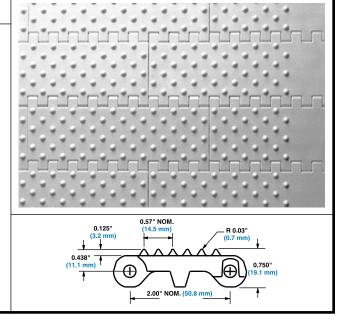

Inset: polyethylene edge module


		Belt Data						
Belt Material Standard Rod Material Ø 0.24 in (6.1 mm)		Belt St	Belt Strength		Temperature Range (continuous)		Belt Weight	
	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²		
Polypropylene	Polypropylene	800	1190	34 to 220	1 to 104	1.56	7.62	
Acetal	Polyethylene	1000	1490	-50 to 150	-46 to 66	2.36	11.52	
Acetal	Polypropylene	1000	1490	34 to 200	1 to 93	2.36	11.52	
Polyethylene	Polyethylene	500	750	-50 to 150	-46 to 66	1.85	9.03	

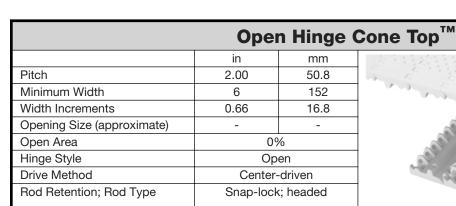


9	SeamFree	™ Open		
	in	mm		
Pitch	2.00	50.8		
Minimum Width	6	152		
Width Increments	0.66	16.8		
Opening Sizes (approx.)	-	-		
Open Area	09	6		
Hinge Style	Ор	en		
Drive Method	Center-driven			
Rod Retention; Rod Type	Snap-lock	; headed		

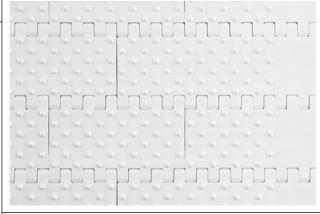
- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Closed upper surface with fully flush edges.
- Fully sculpted and radiused corners, with no pockets or sharp corners to catch and hold debris.
- Cam-link hinge provides easy cleaning, with greater hinge and rod exposure as the belt moves around the sprockets.
- Like Series 800 and Series 1800, the drive bar on the underside of this belt channels water and debris to the outside of the belt for easier, faster cleanup. Drive bar effectiveness is proven both in-house and in field tests.
- Not recommended for product accumulation conditions. Contact Intralox Sales Engineering for more information
- Nub height: 0.100 in (2.5 mm).
- Nub spacing: 0.333 in (8.5 mm).
- Standard nub indent: 1.3 in (33.0 mm).

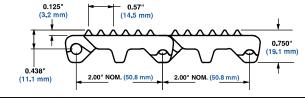


Belt Data									
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt st	rength	•	ture range nuous)	Belt w	veight		
	0.24 1 (0.1 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²		
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.72	13.26		

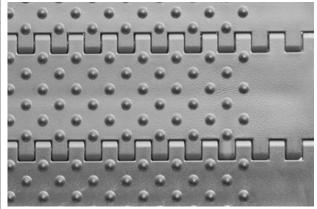

		Cone 1
	in	mm
Pitch	2.00	50.8
Minimum Width	4	102
Width Increments	0.66	16.8
Opening Size (approximate)	-	-
Open Area	09	%
Hinge Style	Ор	en
Drive Method	Center-	-driven
Rod Retention; Rod Type	Snap-lock	k; headed

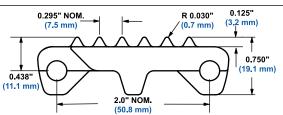
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Closed upper surface with fully flush edges.
- Not recommended for product accumulation conditions. If values are required, contact Intralox Sales Engineering.
- Standard flights and sideguards (without cones) are available.
- Cone standard indent is 1.3 in (33.0 mm).




		Belt Data						
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt st	rength		ure range nuous)	Belt w	elt weight	
	0.24 1 (0.1 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.84 13.89		

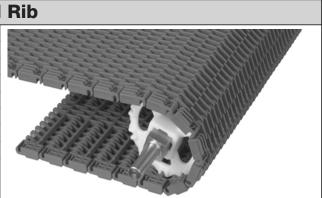
- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Closed upper surface with fully flush edges.
- Fully sculpted and radiused corners, with no pockets or sharp corners to catch and hold debris.
- Cam-link hinge provides easy cleaning, with greater hinge and rod exposure as the belt moves around the sprockets.
- Like Series 800 and Series 1800, the drive bar on the underside of this belt channels water and debris to the outside of the belt for easier, faster cleanup. Drive bar effectiveness is proven both in-house and in field tests.
- Not recommended for product accumulation conditions. Contact Intralox Sales Engineering for more information.
- Standard flights and sideguards (without cones) are available.
- Standard cone indent: 1.3 in (33.0 mm).

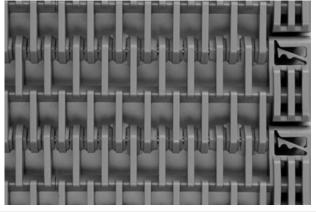


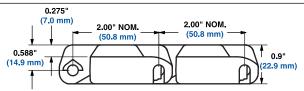

Belt Data								
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt st	rength	Temperature range (continuous)		Belt w	eight /	
	0.24 III (6.1 11111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	
Polypropylene	Polypropylene	900	1340	34 to 220	1 to 104	1.63	7.96	
Polyethylene	Polyethylene	500	740	-50 to 150	-46 to 66	1.70	8.30	
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.52	12.3	

S	eamFree ¹	[™] Open I
	in	mm
Pitch	2.00	50.8
Minimum Width	6	152
Width Increments	0.66	16.8
Opening Sizes (approx.)	-	-
Open Area	09	%
Hinge Style	Ор	en
Drive Method	Center-	-driven
Rod Retention; Rod Type	Snap-lock	k; headed

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- · Closed upper surface with fully flush edges.
- Fully sculpted and radiused corners with no pockets or sharp corners to catch and hold debris.
- Cam-link hinge provides easy cleaning, with greater hinge and rod exposure as the belt moves around the sprockets.
- Like Series 800 and Series 1800, the drive bar on the underside of this belt channels water and debris to the outside of the belt for easier, faster cleanup. Drive bar effectiveness is proven both in-house and in field tests.
- Not recommended for product accumulation conditions.
 Contact the Intralox Technical Support Group for more information.
- Cone height: 0.125 in (3.2 mm).
- Cone spacing: 0.295 in (7.5 mm).
- Standard cone indent: 1.3 in (33 mm).



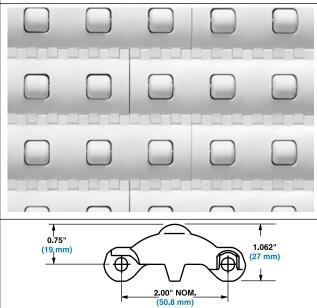

		Belt Data						
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt st	rength		ure range nuous)	Belt w	Belt weight	
	0.24 1 (0.1 11 11)	lb/ft	kg/m	°F	°C	lb/ft²		
Acetal	Polyethylene	900	1340	-50 to 150	-46 to 66	2.61	12.72	



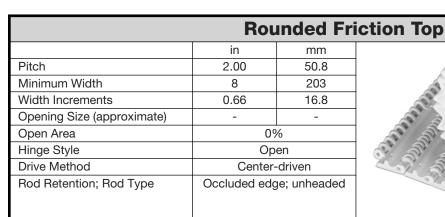
		Raised
	in	mm
Pitch	2.00	50.8
Minimum Width	14	356
Width Increments	2.00	50.8
Opening Sizes (approx.)	0.51 x 0.49	12.9 x 12.4
Open Area	40	%
Hinge Style	Ор	en
Drive Method	Center-	-driven
Rod Retention; Rod Type	Barn door;	unheaded

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Open slots improve drainage and cleanability.
- Cam-link design hinges provide easy cleaning with greater hinge and rod exposure as the belt moves around the sprockets.
- Fully compatible with Series 800 EZ Clean™ angled sprockets.
- Finger transfer plates are available.
- Raised Ribs extend 0.275 in (7.0 mm) above basic module with fully flush edges.

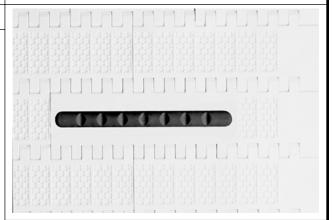
		Belt Data						
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt st	rength	Temperature range (continuous)		Belt w	weight	
	0.24 1 (0.1 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	
Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.48	7.23	
Enduralox PP	Polypropylene	1000	1490	34 to 220	1 to 104	1.48	7.23	

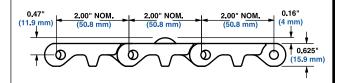


		Roller
	in	mm
Pitch	2.00	50.8
Minimum Width	See Produ	uct Notes
Width Increments	3ee Floui	act notes
Opening Size (approximate)	-	-
Open Area	39	%
Hinge Style	Ор	en
Drive Method	Center-	-driven
Rod Retention; Rod Type	Snap-lock	k; headed

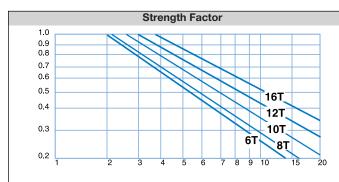

SERIES 800

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Has fully flush edges.
- Uses acetal rollers.
- Uses stainless steel axles.
- Impact resistant belt designed for tough box and package, low back-pressure applications.
- Back-up load is 5–10% of product weight.
- Roller diameter: 0.70 in (17.8 mm). Roller length 0.825 in (20.9 mm).
- Roller spacing: 2.0 in (50.8 mm).
- Standard roller indent: 0.60 in (15 mm).
- Custom widths of 4 in (102 mm) and 6 in (152 mm) and from 10 in (254 mm) and up, in 2.00 in (50.8 mm) increments.



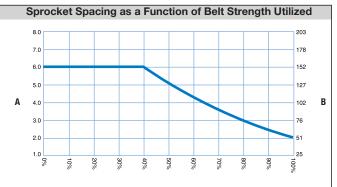

		Belt Data					
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt st	rength		ure range nuous)	Belt w	/eight
	0.24 1 (0.1 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
Polypropylene	Acetal	1000	1490	34 to 200	1 to 93	2.93	14.34
Polyethylene	Acetal	500	750	-50 to 150	-46 to 66	2.99	14.62
Acetal	Acetal	900	1340	-50 to 150	-46 to 66	4.11	20.10

- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- The Rounded Friction Top module is black rubber on a white PP composite base module.
- No mistracking or stick-slip effect, even on long runs. Belt is positively tracked by the sprocket drive system instead of unreliable friction rollers.
- Thermally bonded rubber does not peel off. Friction Top surface is co-molded (thermally bonded) with the plastic base instead of glued on or mechanically fastened.
- Rounded Friction Top module can be used with other S800 styles. Use the belt strength rating of the accompanying modules.
- Easy to maintain and repair: Intralox reusable unheaded rods are quickly removed and installed with only minimal tools, so one can replace individual modules in minutes.
- No tensioning required, which eliminates expensive tensioning systems.
- Lower construction cost: Intralox sprocket drive requires far less space than a friction roller system, allowing shallow, less expensive trench construction.
- Lower wearstrip replacement cost: Flat Top edge modules prevent premature wearstrip erosion. The smooth surface spans 1.5 in (38.1) mm from the outer edge.



Belt Data									
Base belt material	material Base/ friction Standard rod material Ø Belt strength 0.24 in (6.1 mm)		Temperature range (continuous)		Belt weight		Friction Top		
	color	0.24 1 (6.1 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	hardness
Polypropylene	White/	Acetal	2500	3713	-50 to 150	-46 to 66	2.3	11.25	-
Composite	Black								

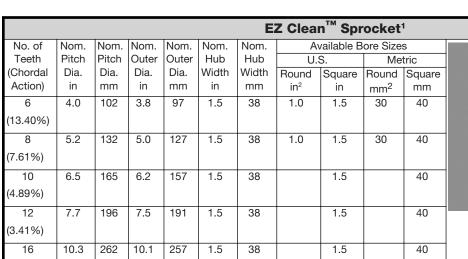
SERIES 800

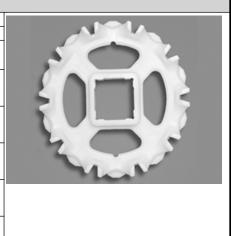

		Sprocket a	nd Support Quantity Refere	nce
Belt Wic	th Range ¹	Minimum Number of		earstrips
in	mm	Sprockets Per Shaft ²	Carryway	Returnway
2	51	1	2	2
4	102	1	2	2
6	152	2	2	2
8	203	2	2	2
10	254	2	3	2
12	305	3	3	2
14	356	3	3	3
16	406	3	3	3
18	457	3	3	3
20	508	5	4	3
24	610	5	4	3
30	762	5	5	4
32	813	7	5	4
36	914	7	5	4
42	1067	7	6	5
48	1219	9	7	5
54	1372	9	7	6
60	1524	11	8	6
72	1829	13	9	7
84	2134	15	11	8
96	2438	17	12	9
120	3048	21	15	11
144	3658	25	17	13
		d number of sprockets at	Maximum 9 in (229 mm) centerline	Maximum 12 in (305 mm) centerline
maxim	um 6 in (152 mr	n) centerline spacing.3	spacing	spacing

Speed/length ratio (V/L)

Divide belt speed (V) by the shaft centerline distance (L). Strength Factor is found at intersection of the speed/length ratio and the appropriate sprocket line. See Belt Selection Instructions for more information.

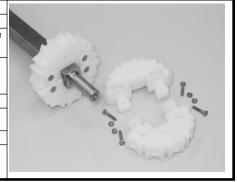
V = ft/min (m/min); T = number of teeth; L = ft (m)


Percentage of allowable belt strength utilized


- A Sprocket spacing, in
- Sprocket spacing, mm

¹ If belt width exceeds a number listed in the table, see the sprocket and support material minimums for the next larger width range. Belts are available in 0.66 in (16.8 mm) increments beginning with minimum width of 2 in (51 mm). If the actual width is critical, contact Intralox Customer Service.

² This number is a minimum. Heavy-load applications can require additional sprockets. Polyurethane sprockets require a maximum 4 in (102 mm) centerline spacing.

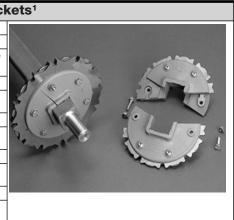

³ Lock down the center sprocket. With only two sprockets, fix the sprocket on the drive journal side only. For lockdown location, see Retainer Rings/Center Sprocket Offset.

			Spli	t Ultra	a Abra	sion F	Resista	nt Poly	yureth	ane (Fl	DA) Spi
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A ⁻	vailable B	ore Size	S	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	
Action)	in	mm	in	mm	in	mm	in ⁴	in	mm ⁴	mm	11/2
10	6.5	165	6.2	157	1.5	38		1.5		40	
(4.89%)											0
12	7.7	196	7.5	191	1.5	38		1.5		40	
(3.41%)								2.5		60	
16	10.3	262	10.1	257	1.5	38		1.5		40	
(1.92%)								2.5		60	

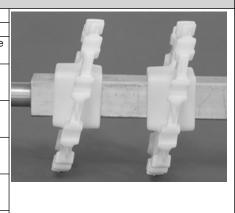
(1.92%)

							Molde	d Spro	cket	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A۱	/ailable B	ore Size	S
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in	in	mm	mm
8	5.2	132	5.0	127	1.5	38		1.5		40
(7.61%)										
10	6.5	165	6.2	157	1.5	38		1.5		40
(4.89%)								2.0		
,								2.5		60
12	7.7	196	7.5	191	1.5	38		1.5		40
(3.41%)								2.5		60
16	10.3	262	10.1	257	1.5	38		1.5		40
(1.92%)								2.5		60

¹ Contact Intralox Customer Service for lead times. When using polyurethane sprockets, the belt strength for belts rated over 750 lb/ft (1120 kg/m) is de-rated to 750 lb/ft (1120 kg/m). All other belts maintain the published rating. The temperature range for polyurethane sprockets is 0°F (-18°C) to 120°F (49°C). Contact Intralox Customer Service for availability of polyurethane sprockets.


² U.S. key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885

³ Contact Customer Service for lead times. When using polyurethane sprockets, the belt strength for belts rated over 750 lb/ft (1120 kg/m) is de-rated to 750 lb/ft (1120 kg/m). All other belts maintain their published rating. The temperature range for polyurethane sprockets is 0°F (-18°C) to 120°F (49°C). Contact Intralox Customer Service for availability of polyurethane sprockets. These sprockets are FDA approved.

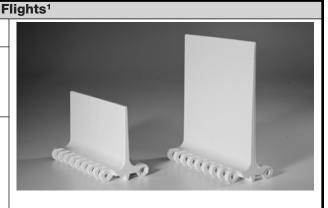

⁴ U.S. key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885

⁵ Contact Intralox Customer Service for lead times. When using polyurethane sprockets, the belt strength for belts rated over 750 lb/ft (1120 kg/m) is de-rated to 750 lb/ft (1120 kg/m). All other belts maintain the published rating. The temperature range for polyurethane sprockets is 0° F (-18°C) to 120°F (49°C). Contact Intralox Customer Service for availability of polyurethane sprockets.

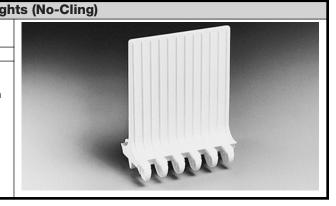
					Abras	ion Re	esistan	t Split	Metal	Sprocl
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	ore Size	s
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in	in	mm	mm
8	5.2	132	5.0	127	1.7	43		1.5		40
(7.61%)								2.5		60
10	6.5	165	6.2	157	1.7	43		1.5		40
(4.89%)								2.5		60
12	7.7	196	7.5	191	1.7	43		1.5		40
(3.41%)								2.5		60
16	10.3	262	10.1	257	1.7	43		1.5		40
(1.92%)								2.5		60

						Angle	d EZ C	lean™	Sprod	ket²
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A۱	vailable B	ore Size	S
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in	in	mm	mm
6	4.0	102	3.8	97	2.0	50.8		1.5		40
(13.40%)										
8	5.2	132	5.0	127	2.0	50.8		1.5		40
(7.61%)										
10	6.5	165	6.2	157	2.0	50.8		1.5		40
(4.89%)										
12	7.7	196	7.5	191	2.0	50.8		1.5		40
(3.41%)										
16	10.3	262	10.1	257	2.0	50.8		1.5		40
(1.92%)								2.5		60

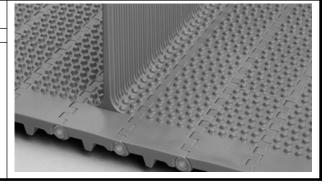
	Sprocket Spacer ³							
Nom.	Nom.	Available Bore Sizes				1 2		
Sprocket	Sprocket	U.S. \$	Sizes	Metric	Sizes	100		
Spacer Width in	Spacer Width mm	Round in	Square in	Round mm	Square mm			
1.0	25		1.5		40			
1.5	38		1.5		40		-84	
2.0	51		1.5		40			
4.0	102		1.5					


Contact Intralox Customer Service for lead times.
 Contact Intralox Customer Service for lead times. Do not use Angled EZ Clean Sprockets with Series 800 Mesh Top.

³ Contact Intralox Customer Service for available materials.


		Streamline
Available F	light Height	Available Materials
in	mm	Available Materials
1	25	
2	51	Dehimien dene nehiothidene eestel
3	76	Polypropylene, polyethylene, acetal, nylon
4	102	Tiylon
6	152	

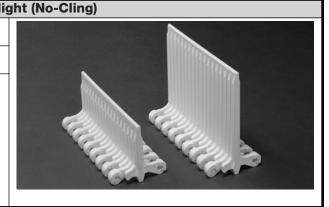
- Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.
- Flat Top flight is smooth (streamlined) on both sides.
- An extension can be welded at a 45-degree angle to create a bent
- Flights can be cut down to custom heights. Minimum height: 0.25 in
- Minimum indent without sideguards: 1.3 in (33 mm).


		Flat Top Base Flig
Available F	light Height	Available Materials
in	mm	Available Materials
4	102	Polypropylene, polyethylene, acetal

- Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.
- Flights can be cut down to custom heights. Minimum height: 0.25 in (6.4 mm).
- Minimum indent without sideguards: 1.3 in (33 mm).

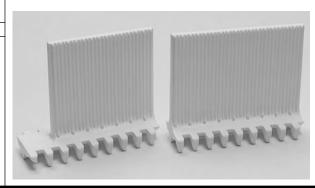
		Nub Top Base Flights (Double No-Cling)
Available Flight Height		Available Materials	には大いなはばばばれず
in	mm	Available iviaterials	
4	102	Polypropylene, polyethylene, acetal	

- No-Cling vertical ribs are on both sides of the flight.
- Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.
- Flights can be cut down to custom heights. Minimum height: 0.25 in (6.4 mm).
- Minimum indent without sideguards: 1.3 in (33 mm).

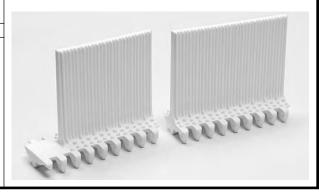


		Flush Grid Base Fl
Available Flight Height		Available Materials
in	mm	Available iviaterials
2	51	Polypropylene, polyethylene, acetal,
4	102	CRFR, Detectable Polypropylene A22

- The No-Cling vertical ribs are on both sides of the flight.
- Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.
- These flights cannot be used with the S800 Perforated Flat Top (Slotted version with 18% open area).
- Molded 1.3 in (33 mm) indent available.

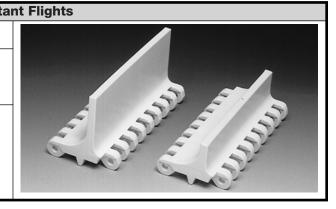

SERIES 800

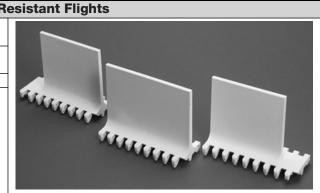
- Flights can be cut down to custom heights. Minimum height: 0.25 in
- Minimum indent without sideguards: 1.3 in (33 mm).


		No-Cling Impact Resistant	Open Hinge Flights		
Available Flight Height		Available Materials			
in	mm	Available Materials			
4	102	Acetal, polypropylene, polyethylene			
Each flight rises out of the center of its supporting module, molded					

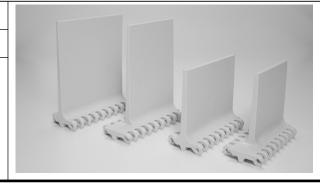
- as an integral part. No fasteners are required.
- Available with a 1.3 in (33 mm) molded indent.
- Flights can be cut down to custom heights. Minimum height: 0.25 in (6.4 mm).
- Minimum indent without sideguards: 1.3 in (33 mm).

No-Cling Impact Resistant Open Hinge Nub Top Flights							
Available Flight Height		Available Materials					
in	mm	Available Materials					
4	102	Acetal, polypropylene	Missee				
• Each flight	Fach flight rises out of the center of its supporting module, molded						


- Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.
- Available with a 1.3 in (33 mm) molded indent.
- Flights can be cut down to custom heights. Minimum height: 0.25 in (6.4 mm).
- Minimum indent without sideguards: 1.3 in (33 mm).


		Impact Resist
Available F	light Height	Available Materials
in	mm	Available Materials
1	25	
2	51	Acetal, X-Ray Detectable Acetal
3	76	Acetal, A-hay Detectable Acetal
4	102	

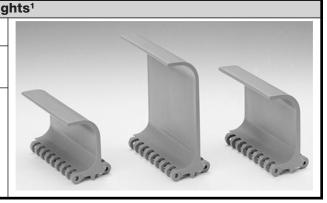
- Each flight rises out of its supporting module, molded as an integral part. No fasteners are required.
- Flights can be cut down to custom heights. Minimum height: 0.25 in (6.4 mm).
- Minimum indent without sideguards: 1.3 in (33 mm).


		Open Hinge Impact R
Available F	light Height	Available Materials
in	mm	Available Materials
4	102	Polypropylene, polyethylene, acetal, X-
		ray detectable acetal, CRFR, PK
6	152	

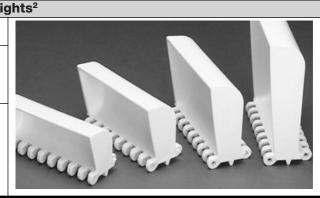
- Each flight rises out of the center of its supporting module. No fasteners are required.
- Standard 4 in (102 mm) height can be cut to suit application.
- Available with 1.3 in (33 mm) and 2 in (51 mm) molded indent.
- Minimum indent without sideguards: 1.3 in (33 mm).

Tough Fligh					
Available F	light Height	Available Materials			
in	mm	Available iviaterials			
4	102	Hi-Impact			
6	152	Til-lilipact			

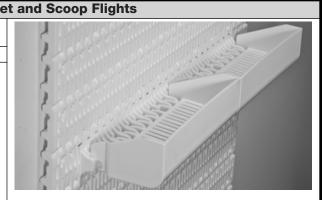
- Each flight rises out of the center of its supporting module. No fasteners are required.
- Can be cut down to custom heights. Minimum height: 0.25 in (6.4
- Molded 2 in (51 mm) indent available.
- Minimum indent without sideguards: 1.3 in (33 mm).



		Scoop Fli			
Available F	light Height	Available Materials			
in	mm	Available Materials			
3	76	Delymranylana nalyathylana acatal			
4	102	Polypropylene, polyethylene, acetal, nylon, CRFR			
6	152	TIVIOTI, ONLY			


- Each flight rises out of its supporting module, molded as an integral part. No fasteners are required.
- Bucket flights and scoop flights can be cut and combined for custom-built belts. Contact Intralox Customer Service for more
- Minimum indent without sideguards:1.3 in (33 mm).

SERIES 800


		Bucket Fli
Available Flight Height		Available Materials
in	mm	Available Materials
2.25 ³	57 ⁴	
3 76		Polypropylene, polyethylene, acetal
4	102	l dispropsiene, polyetrisiene, acetar
6 152		
• Each flight	iene out of ite eu	innorting module, molded as an integral

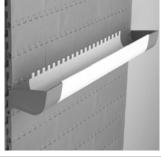
- Each flight rises out of its supporting module, molded as an integral part. No fasteners are required.
- Bucket flights and scoop flights can be cut and combined for custom-built belts. Contact Intralox Customer Service for more
- Minimum indent without sideguards:1.3 in (33 mm).

		3-Piece Perforated Bucket
Available F	light Height	Available Materials
in	mm	Available Materials
4	102	Polypropylene, polyethylene ⁴ , acetal ⁶
• Flights sone	ist of 2 pieces t	he have module the attachment and

- Flights consist of 3 pieces: the base module, the attachment, and the rod.
- · Open slots improve drainage for inclines.
- Flight surface has 30% open area.
- Belt surface has 0% open area. Base module is \$800 Flat Top Open
- Flights can be cut and combined for custom-built belts. Contact Intralox Customer Service for more information.
- Do not use with S800 Perforated Flat Top (slotted version with 18% open area) or S800 Flush Grid Nub Top.
- Bucket profile has a 0.27 in (6.9 mm) gap between the belt top
- surface and the bottom surface of bucket side panel. • Approximate flight surface opening size: 0.130 in (3.3 mm) × 2.40 in
- (70.0 mm).
- Minimum indent without sideguards:2.00 in (50.8 mm).

¹ Contact Intralox Customer Service for availability.

² Contact Intralox Customer Service for availability.


³ .25 in (57 mm) bucket flight only available in polypropylene.

⁴ Contact Intralox Customer Service for availability.

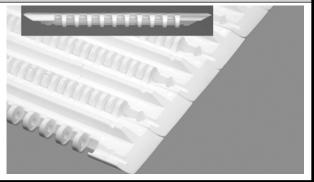
Combining Bucket Flights and Scoop Flights

6 in (152 mm) bucket flights with indent

3 in (76 mm) bucket flight and scoop flights, no indent

4 in (102 mm) bucket flight and scoop flights, no indent

6 in (152 mm) bucket flight and scoop flights with indent

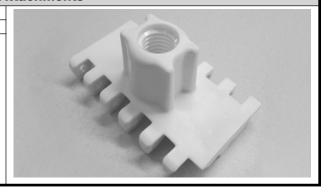

Note: Bucket flights and scoop flights can be cut and combined for custom-built belts. Contact Intralox Customer Service for more information.

Tapered Edge

Available Materials

Polypropylene, acetal

- Compatible with Series 800 Flat Top and Series 800 Mesh Top.
- Designed to accept headed plastic rods.
- Steel rods can be retained with plastic rodlets.

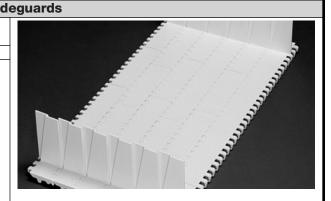


Threaded Barrel Attachments

Available Materials

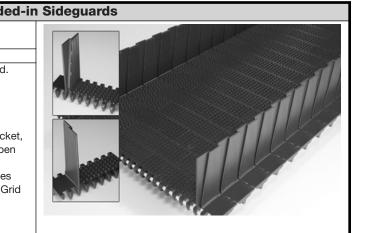
Acetal

- Attaches to S800 Open Hinge Flat Top modules-4 in (102 mm) wide.
- 3/4 in-10 thread.
- Commonly used on poultry cone assemblies for the manual deboning process.


		Sidegua				
Available Sizes		Available Materials				
in	mm	Available Materials				
2	51					
3	76	Delypropylone polyethylone costal				
4	102	Polypropylene, polyethylene, aceta				
6	152					
The Control of the	allow hits and an allow					

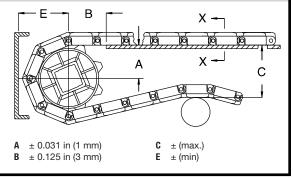
- · Fastened by the hinge rods.
- Sideguards use a standard overlapping design and are an integral part of the belt, with no fasteners required.
- Standard sideguard orientation is angled inward toward the product (product friendly). If needed, sideguards can be angled outward toward the conveyor.
- When going around the 6- and 8-tooth sprocket, the sideguards fan out, opening a gap at the top that can allow small products to fall out. The sideguards stay completely closed when going around the 10-, 12- and 16-tooth sprockets.
- Normal gap between the sideguards and the edge of a flight: 0.3 in (8 mm).
- Minimum indent: 0.7 in (18 mm) except for Flush Grid which is 1.3 in (33 mm).

Molded-in Si				
Available Materials	le Sizes	Availab		
Available Materials	mm	in		
Polypropylene, polyethylene, acetal	102	4		
A Martin de la constant de la contraction de la College de la College de Contraction de la College d				


- Molded as an integral part of the belt, with no fasteners required.
- Part of the Intralox EZ Clean product line.
- Overlapping sideguards fully open when wrapping around sprocket, allowing greater access during cleaning. Sideguards partially open on forward bends of elevating conveyors.
- Sideguards can be spliced into all Series 800 belts, except Series 800 Perforated Flat Top (18% open area) and Series 800 Flush Grid Nub Top.
- Standard 4 in (102 mm) height can be cut to suit application.
- Molded indent: 1.3 in (33 mm).
- Minimum backbend radius: 12 in (305 mm).

		Nub Top Mold
Availab	le Sizes	Available Materials
in	mm	Available Materials
4	102	Acetal, polypropylene

- Molded as an integral part of the belt, with no fasteners required.
- Part of the Intralox EZ Clean product line.
- Nub Top design and No-Cling rib feature provide a non-stick conveying surface that delivers superior product release and cleanability.
- Overlapping sideguards fully open when wrapping around sprocket, allowing greater access during cleaning. Sideguards partially open on forward bends of elevating conveyors.
- Sideguards can be spliced into all Series 800 belts, except Series 800 Perforated Flat Top (18% open area) and Series 800 Flush Grid Nub Top.
- Standard 4 in (102 mm) height can be cut to suit application.
- Molded indent: 1.3 in (33 mm).
- Minimum backbend radius:10 in (254 mm).


	Scoo	p/Bucket Fli	ght Cross S	ectional Area for Vertical Incline
in	mm	sq in	sq mm	
Scoo	p Height	Α	rea	R _{0,1"} 1
3	76	4.3	2774	(2.5 mm)
4	102	6.0	3871	
6	152	9.5	6129	0.5"
Buck	et Height	Α	rea	(12,7 mm) (7,6 mm) 1 (7,6 mm) 2"
2.25	57	2.3	1484	R 1.0" (50.8 mm)
3.00	76	4.3	2774	(25,4 mm)
4.00	102	6.0	3871	<u> </u>
6.00	152	9.5	6129	7
Minimum row	spacing: 6 in (152	mm) for 6 in (152	mm) scoops	1 Height 2 Area
and buckets,	and 4 in (102 mm) f	or all other sizes	•	

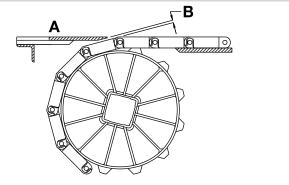
Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see Basic Conveyor Frame Requirements.

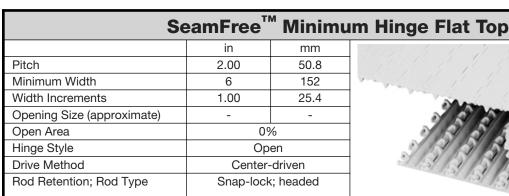
Sp	rocket De	scription	Α			В		С	Е	
Pitch D	iameter	No. Teeth	Range (Botto	m to Top)	in	mm	in	mm	in	mm
in	mm	No. reem	in	mm	in	mm	in	mm	in	mm
Series 8	00 Flat Top	, Flush Grid, Mes	sh Top, Open Hinge F	lat Top, SeamFr	ee Open I	linge Flat	Top, Toug	gh Flat Top	o, Perfora	ted Flat
				Top (all styles)						
4.0	102	6	1.42-1.69	36-43	1.73	44	4.00	102	2.38	60
5.2	132	8	2.09-2.29	53-58	2.00	51	5.20	132	2.98	76
6.5	165	10	2.78-2.94	71-75	2.16	55	6.50	165	3.63	92
7.7	196	12	3.41-3.54	87-90	2.45	62	7.70	196	4.23	107
10.3	262	16	4.74-4.84	120-123	2.84	72	10.30	262	5.53	140
				eries 800 Mini R		1				
4.0	102	6	1.42-1.69	36-43	1.73	44	4.13	105	2.50	64
5.2	132	8	2.09-2.29	53-58	2.00	51	5.33	135	3.10	79
6.5	165	10	2.78-2.94	71-75	2.16	55	6.63	168	3.75	95
7.7	196	12	3.41-3.54	87-90	2.45	62	7.83	199	4.35	110
10.3	262	16	4.74-4.84	120-123	2.84	72	10.43	265	5.65	144
		1	00 Flush Grid Nub To		1	1				
4.0	102	6	1.42-1.69	36-43	1.73	44	4.10	104	2.48	63
5.2	132	8	2.10-2.30	53-58	1.98	50	5.33	135	3.09	78
6.5	165	10	2.77-2.92	70-74	2.18	55	6.57	167	3.71	94
7.7	196	12	3.42-3.55	87-90	2.43	62	7.83	199	4.34	110
10.3	262	16	4.72-4.81	120-122	2.88	73	10.35	263	5.60	142
			Cone Top, Open Hing			pen Hing				
4.0	102	6	1.42-1.69	36-43	1.73	44	4.13	105	2.50	64
5.2	132	8	2.10-2.30	53-58	1.98	50	5.35	136	3.11	79
6.5	165	10	2.77-2.92	70-74	2.18	55	6.60	168	3.74	95
7.7	196	12	3.42-3.55	87-90	2.43	62	7.85	199	4.36	111
10.3	262	16	4.72-4.81	120-122	2.88	73	10.38	264	5.63	143
				ries 800 Roller T		1				
4.0	102	6	1.42-1.69	36-43	1.73	44	4.44	113	2.81	71
5.2	132	8	2.10-2.30	53-58	1.98	50	5.66	144	3.43	87
6.5	165	10	2.77-2.92	70-74	2.18	55	6.91	176	4.05	103
7.7	196	12	3.42-3.55	87-90	2.43	62	8.17	207	4.68	119
10.3	262	16	4.72-4.81	120-122	2.88	73	10.69	272	5.94	151
		_		ies 800 Raised I		1	1			
4.0	102	6	1.42-1.69	36-43	1.73	44	4.28	109	2.65	67
5.2	132	8	2.09-2.29	53-58	2.00	51	5.48	139	3.25	83
6.5	165	10	2.78-2.94	71-75	2.16	55	6.78	172	3.90	99
7.7	196	12	3.41-3.54	87-90	2.45	62	7.98	203	4.50	114
10.3	262	16	4.74-4.84	120-123	2.84	72	10.58	269	5.80	147
	1.5.	-		300 Round Fricti		1 .		1		
4.0	102	6	1.42-1.69	36-43	1.74	44	4.16	106	2.53	64
5.2	132	8	2.09-2.29	53-58	2.00	51	5.36	136	3.13	80
6.5	165	10	2.78-2.94	71-75	2.17	55	6.66	169	3.78	96
7.7	196	12	3.40-3.54	86-90	2.45	62	7.86	200	4.38	111
10.3	262	16	4.74-4.84	120-123	2.84	72	10.46	266	5.68	144



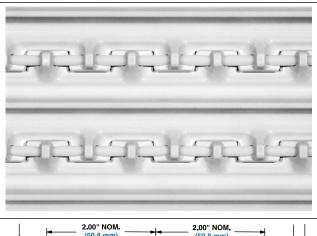
Dead Plate Gap

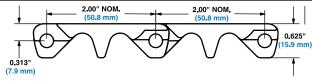
A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.

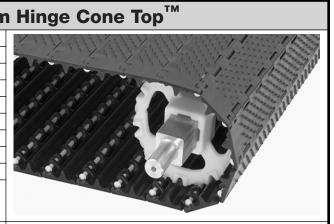

Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.

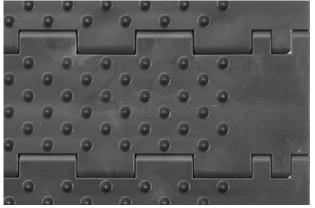
SERIES 800

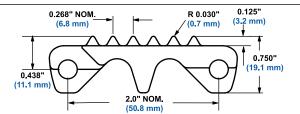

- A Top surface of dead plate
- B Dead plate gap


Sprocket Description			Ga	p
Pitch Diameter		No. Teeth	in	mm
in	mm	No. reeur	ın	111111
4.0	102	6	0.268	6.8
5.2	132	8	0.200	5.1
6.5	165	10	0.158	4.0
7.7	196	12	0.132	3.4
10.3	262	16	0.098	2.5

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Smooth, closed upper surface with fully flush edges.
- Fully sculpted and radiused corners with no pockets or sharp corners to catch and hold debris.
- Cam-link hinge provides easy cleaning, with greater hinge and rod exposure as the belt moves around the sprockets.
- Like Series 1600 and Series 1800, the drive bar on the underside of this belt channels water and debris to the outside of the belt for easier, faster cleanup. Drive bar effectiveness is proven both in-house and in field tests.
- Designed for use with Series 800 Angled EZ Clean sprockets, but fully compatible with standard Series 800 EZ Clean sprockets.
- Belts over 36 in (914 mm) are built with multiple modules per row, but seams are minimized.

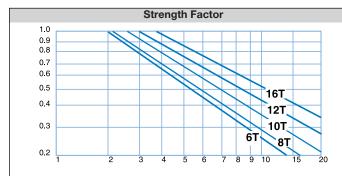



Belt Data								
Standard rod material Ø	Belt strength			Belt weight				
0.24 1 (0.1 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²		
Acetal	275	409	-50 to 200	-46 to 93	2.19	10.68		
Polypropylene	250	372	34 to 200	1 to 93	2.13	10.41		
Polyethylene	150	223	-50 to 150	-46 to 66	2.13	10.40		
Acetal	200	298	-50 to 150	-46 to 66	1.50	7.32		
Polyethylene	150	223	-50 to 150	-46 to 66	1.44	7.05		
	0.24 in (6.1 mm) Acetal Polypropylene Polyethylene Acetal	Standard rod material Ø 0.24 in (6.1 mm) Belt str Acetal 275 Polypropylene 250 Polyethylene 150 Acetal 200	Standard rod material Ø 0.24 in (6.1 mm) Belt strength Ib/ft kg/m Acetal 275 409 Polypropylene 250 372 Polyethylene 150 223 Acetal 200 298	Standard rod material Ø 0.24 in (6.1 mm) Belt strength Temperat (conting the conting the cont	Standard rod material Ø 0.24 in (6.1 mm) Belt strength Temperature range (continuous) Ib/ft kg/m °F °C Acetal 275 409 -50 to 200 -46 to 93 Polypropylene 250 372 34 to 200 1 to 93 Polyethylene 150 223 -50 to 150 -46 to 66 Acetal 200 298 -50 to 150 -46 to 66	Standard rod material Ø 0.24 in (6.1 mm) Belt strength Temperature range (continuous) Belt w (continuous) Ib/ft kg/m °F °C Ib/ft² Acetal 275 409 -50 to 200 -46 to 93 2.19 Polypropylene 250 372 34 to 200 1 to 93 2.13 Polyethylene 150 223 -50 to 150 -46 to 66 2.13 Acetal 200 298 -50 to 150 -46 to 66 1.50		



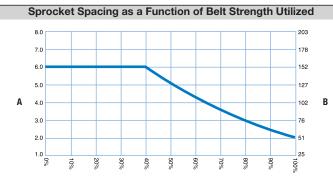
Sea	amFree™	Minimun
	in	mm
Pitch	2.00	50.8
Minimum Width	6	152
Maximum Width	36	914
Width Increments	1.00	25.4
Opening Sizes (approx.)	-	-
Open Area	09	%
Hinge Style	Op	en
Drive Method	Center-driven	
Rod Retention; Rod Type	Snap-lock	r; headed

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Closed upper surface with fully flush edges.
- Cam-link hinges provide easy cleaning with greater hinge and rod exposure as the belt moves around the sprockets.
- Fully sculpted and radiused corners with no pockets or sharp corners to catch and hold debris.
- Like Series 800 and Series 1800, the drive bar on the underside of this belt channels water and debris to the outside of the belt for easier, faster cleanup. Drive bar effectiveness is proven both in-house and in field tests.
- Not recommended for product accumulation conditions.
 Contact Intralox Sales Engineering for more information.
- Cone height: 0.125 in (3.2 mm).
- Cone spacing: 0.268 in (6.88 mm).
- Standard cone indent: 1.3 in (33 mm).



Belt Data							
Belt Material	Standard Rod Material Ø 0.24 in (6.1 mm)	Belt Strength		Temperature Range (continuous)		Belt Weight	
		lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
Acetal	Acetal	275	409	-50 to 200	-46 to 93	2.28	11.13
Acetal	Polypropylene	250	372	34 to 200	1 to 93	2.22	10.84
Acetal	Polyethylene	150	223	-50 to 150	-46 to 66	2.22	10.84
Polyethylene	Acetal	200	298	-50 to 150	-46 to 66	1.56	7.62
Polyethylene	Polypropylene	150	223	-50 to 150	-46 to 66	1.50	7.32

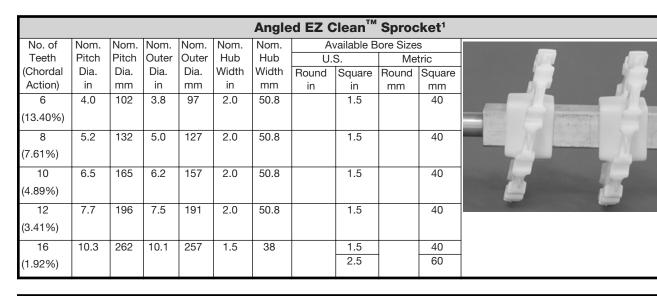
SERIES 850


	Sprocket and Support Quantity Reference				
Belt Wic	th Range ¹	Minimum Number of	Wearstrips		
in	mm	Sprockets Per Shaft ²	Carryway	Returnway	
2	51	1	2	2	
4	102	1	2	2	
6	152	2	2	2	
8	203	2	2	2	
10	254	2	3	2	
12	305	3	3	2	
14	356	3	3	3	
16	406	3	3	3	
18	457	3	3	3	
20	508	5	4	3	
24	610	5	4	3	
30	762	5	5	4	
32	813	7	5	4	
36	914	7	5	4	
42	1067	7	6	5	
48	1219	9	7	5	
54	1372	9	7	6	
60	1524	11	8	6	
72	1829	13	9	7	
84	2134	15	11	8	
96	2438	17	12	9	
120	3048	21	15	11	
144	3658	25	17	13	
For other w	For other widths, use an odd number of sprockets at		Maximum 9 in (229 mm) centerline	Maximum 12 in (305 mm) centerline	
Maximum 6 in (152 mm) centerline spacing.3		m) centerline spacing.3	spacing	spacing	

Speed/length ratio (V/L)

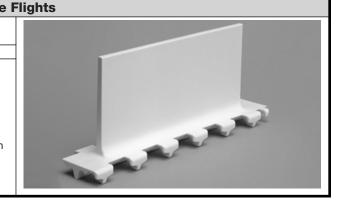
Divide belt speed (V) by the shaft centerline distance (L). Strength Factor is found at intersection of the speed/length ratio and the appropriate sprocket line. See Belt Selection Instructions for more information.

V = ft/min (m/min); T = number of teeth; L = ft (m)


Percentage of allowable belt strength utilized

- A Sprocket spacing, in
- B Sprocket spacing, mm

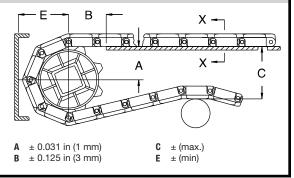
¹ If belt width exceeds a number listed in the table, see the sprocket and support material minimums for the next larger width range. Belts are available in 1.0 in (25.4 mm) increments beginning with minimum width of 2 in (51 mm). If the actual width is critical, contact Intralox Customer Service.


² This number is a minimum. Heavy-load applications can require additional sprockets. Polyurethane sprockets require a maximum 4 in (102 mm) centerline spacing.

³ Lock down the center sprocket. With only two sprockets, fix the sprocket on the drive journal side only. For lockdown location, see Retainer Rings/Center Sprocket Offset.

		Streamline		
Available Flight Height		Available Materials		
in	mm	Available Materials		
4	102	Acetal		

- Flat Top flight is smooth (streamlined) on both sides.
- Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.
- SeamFree flights are available in 12 in (304 mm) widths; flighted belts greater that 12 in (304 mm) wide are available with seams minimized.
- Flights can be cut down to custom heights. Minimum height: 0.25 in (6.4 mm).
- Molded-in, 1.3 in (33 mm) indent from each edge.

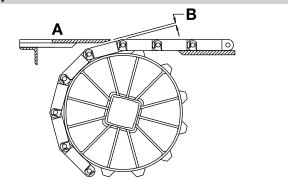


Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

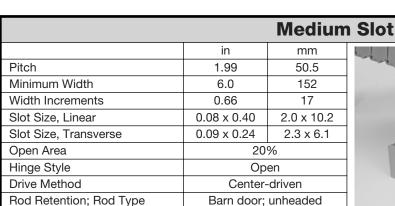
For complete descriptions of the dimensions, see Basic Conveyor Frame Requirements.

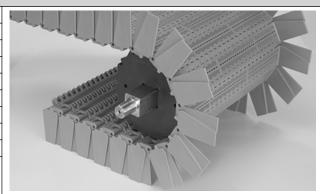

Sp	rocket De	scription	Α		E	3			E	
Pitch D	Diameter	No. Teeth	Range (Bottor	n to Top)	in	mm	in	mm	in	mm
in	mm	No. reeur	in	mm	""	111111	""	111111	- 111	111111
Series 850 SeamFree Minimum Hinge Flat Top										
4.0	102	6	1.42-1.69	36-43	1.73	44	4.00	102	2.38	60
5.2	132	8	2.09-2.29	53-58	2.00	51	5.20	132	2.98	76
6.5	165	10	2.78-2.94	71-75	2.16	55	6.50	165	3.63	92
7.7	196	12	3.41-3.54	87-90	2.45	62	7.70	196	4.23	107
10.3	262	16	4.74-4.84	120-123	2.84	72	10.30	262	5.53	140
	•		Series 850 Seam	Free Minimum I	Hinge Con	е Тор				
4.0	102	6	1.42-1.69	36-43	1.73	44	4.13	105	2.50	64
5.2	132	8	2.10-2.30	53-58	1.98	50	5.35	136	3.11	79
6.5	165	10	2.77-2.92	70-74	2.18	55	6.60	168	3.74	95
7.7	196	12	3.42-3.55	87-90	2.43	62	7.85	199	4.36	111
10.3	262	16	4.72-4.81	120-122	2.88	73	10.38	264	5.63	143

Dead Plate Gap

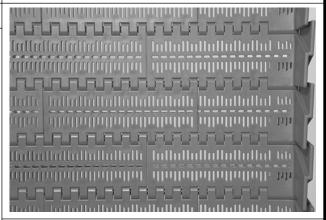
A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

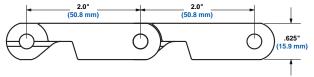
When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.

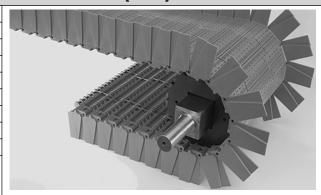

Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.

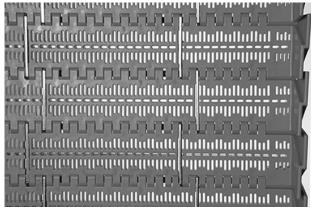


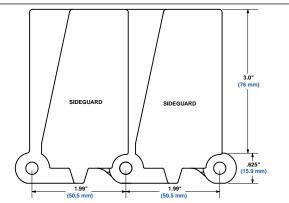
SERIES 850


- A Top surface of dead plate
- B Dead plate gap


	Sprocket Description	Gap			
Pitch D	iameter	No. Teeth	in	mm	
in	mm	No. Teetii	""		
5.2	132	8	0.200	5.1	
6.5	165	10	0.158	4.0	
7.7	196	12	0.132	3.4	

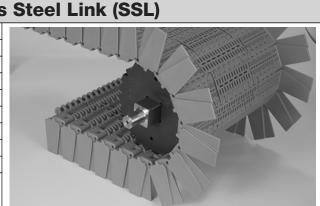

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a helt
- Available with or without molded-in sideguards (MISG).
 Specify sideguards when ordering.
- Molded-in sideguards are flush with belt edges to provide maximum use of belt surface.
- Enduralox polypropylene material increases resistance to chemical and temperature cycling.
- Barn door style rod retention system simplifies installation and routine maintenance.
- Drive system requires less back-tension and is less sensitive to belt elongation.
- Robust design reduces contamination risks.
- For belts with molded-in sideguards, provide a minimum backbend radius of 7.0 in (180 mm).

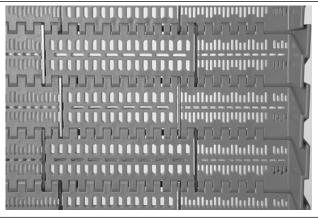


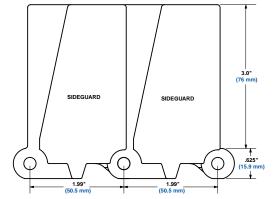

Belt Data								
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt strength		Temperature range (continuous)		Belt weight		
	0.24 1 (0.1 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	
Enduralox polypropylene	303/304 stainless steel	1500	2230	34 to 220	1 to 104	2.4	11.7	

Me	dium Slo	t Stainle	ss Steel Link (SSL)
	in	mm	
Pitch	1.99	50.5	
Minimum Width	11.3	288	
Width Increments	0.66	17	All mark
Slot Size, Linear	0.08 x 0.40	2.0 x 10.2	
Slot Size, Transverse	0.09 x 0.24	2.3 x 6.1	
Open Area	26	%	
Hinge Style	Ор	en	
Drive Method	Center-	-driven	
Rod Retention; Rod Type	Barn door;	unheaded	

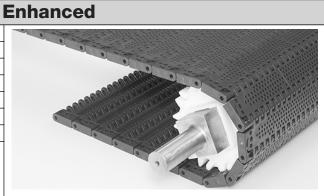
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Available with or without molded-in sideguards (MISG). Specify sideguards when ordering.
- Molded-in sideguards are flush with belt edges to provide maximum utilization of belt surface.
- Enduralox polypropylene material increases resistance to chemical and temperature cycling.
- Barn door style rod retention system simplifies installation and routine maintenance.
- Stainless steel links (SSL) are integrated into the belt design to manage high loads and thermal expansion associated with temperature variations.
- Drive system requires less back tension and is less sensitive to belt elongation.
- · Robust design reduces contamination risks.
- For belts with molded-in sideguards, provide a minimum backbend radius of 7 in (180 mm).

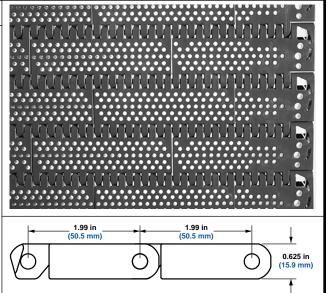



Belt Data								
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt strength		Temperature range (continuous)		Belt weight		
	0.24 1 (0.1 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	
Enduralox polypropylene	Wear resistant stainless steel	2000	3000	34 to 212	1 to 100	2.6	12.7	



La	arge Slot	Stainless
	in	mm
Pitch	1.99	50.5
Minimum Width	16.0	406
Width Increments	0.66	17
Slot Size, Linear	0.16 x 0.39	4.1 x 9.9
Slot Size, Transverse	0.12 x 0.50	3.0 x 12.7
Open Area	22	%
Hinge Style	Ор	en
Drive Method	Center-	-driven
Rod Retention; Rod Type	Barn door;	unheaded


- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Available with or without molded-in sideguards (MISG).
 Specify sideguards when ordering.
- Molded-in sideguards are flush with belt edges and provide maximum use of belt surface.
- Proven Enduralox polypropylene material increases resistance to chemical and temperature cycling.
- Barn door style rod retention system simplifies installation and routine maintenance.
- Stainless steel links (SSL) are integrated into the belt design to manage high loads and thermal expansion associated with temperature variations.
- Proven drive system requires less back tension and is less sensitive to belt elongation.
- Robust design reduces contamination risks.
- For belts with molded-in sideguards, provide a minimum backbend radius of 7 in (180 mm).



Belt Data								
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt strength		Temperature range (continuous)		Belt weight		
	0.24 1 (6.1 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	
Enduralox polypropylene	luralox polypropylene Wear resistant stainless steel		3000	34 to 212	1 to 100	2.6	12.7	

	Rou	nd Hole
	in	mm
Pitch	1.99	50.5
Minimum Width	6	152.4
Width Increments	0.66	16.8
Opening Size (approximate)	-	-
Open Area	20	%
Hinge Style	Ор	en
Drive Method	Center-	-driven

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Smooth upper surface with fully flush edges.
- Enhanced design and hole pattern of S800 Perforated Flat Top.
- Improved hole pattern and more open hinge design provides better airflow and drainage.
- Minimum sprocket indent: 1.25 in (32 mm) to the edge of the sprocket.

Belt Data									
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt strength		Temperature range (continuous)		Belt weight			
	0.24 (11 (6.1 11111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²		
Acetal	304 stainless steel	1500	2200	-50 to 150	-46 to 66	3.10	15.14		
X-Ray Detectable Acetal stainless steel		1500	2232	-50 to 200	-46 to 93	3.1	15.14		

SERIES 888

Belt Width Range¹ in mm 6 152 8 203 10 254 12 305 14 356 16 406 18 457 20 508 24 610 30 762 32 813 36 914	Minimum Number of Sprockets Per Shaft² 2 2 2 2 3 3 3 3 5 5 5	in 22.6-28.0 28.6-30.6 31.3-35.3 36.0-40.6 41.3-46.0 46.6-48.0 48.6-52.6 53.3-58.6	mm 575-711 727-778 795-897 914-1032 1049-1167 1184-1218 1235-1336 1353-1489	Maximum Number of Sprockets Per Shaft ² 6 7 8 9 10 11	Slo	Returnway 2 2 2 2 2 3 3 3
6 152 8 203 10 254 12 305 14 356 16 406 18 457 20 508 24 610 30 762 32 813	Shaft ² 2 2 2 3 3 3 5 5	22.6-28.0 28.6-30.6 31.3-35.3 36.0-40.6 41.3-46.0 46.6-48.0 48.6-52.6 53.3-58.6	575-711 727-778 795-897 914-1032 1049-1167 1184-1218 1235-1336	Shaft ² 6 7 8 9 10 11	2 2 3 3 3 3	2 2 2 2 2 3 3
8 203 10 254 12 305 14 356 16 406 18 457 20 508 24 610 30 762 32 813	2 2 3 3 3 3 3 5 5	28.6-30.6 31.3-35.3 36.0-40.6 41.3-46.0 46.6-48.0 48.6-52.6 53.3-58.6	727-778 795-897 914-1032 1049-1167 1184-1218 1235-1336	7 8 9 10 11	2 3 3 3 3	2 2 2 3 3
10 254 12 305 14 356 16 406 18 457 20 508 24 610 30 762 32 813	2 3 3 3 3 3 5 5	31.3-35.3 36.0-40.6 41.3-46.0 46.6-48.0 48.6-52.6 53.3-58.6	795-897 914-1032 1049-1167 1184-1218 1235-1336	8 9 10 11 12	3 3 3 3	2 2 3 3
12 305 14 356 16 406 18 457 20 508 24 610 30 762 32 813	3 3 3 3 5 5	36.0-40.6 41.3-46.0 46.6-48.0 48.6-52.6 53.3-58.6	914-1032 1049-1167 1184-1218 1235-1336	9 10 11 12	3 3 3	2 3 3
14 356 16 406 18 457 20 508 24 610 30 762 32 813	3 3 3 5 5	41.3-46.0 46.6-48.0 48.6-52.6 53.3-58.6	1049-1167 1184-1218 1235-1336	10 11 12	3	3
16 406 18 457 20 508 24 610 30 762 32 813	3 3 5 5	46.6-48.0 48.6-52.6 53.3-58.6	1184-1218 1235-1336	11 12	3	3
18 457 20 508 24 610 30 762 32 813	3 5 5	48.6-52.6 53.3-58.6	1235-1336	12		-
20 508 24 610 30 762 32 813	5 5	53.3-58.6		•	3	3
24 610 30 762 32 813	5		1353-1/180			
30 762 32 813		========	1000 1700	13	4	3
32 813	-	59.3-64.6	1506-1641	14	4	3
	5	65.3-66.6	1658-1692	15	5	4
00 014	7	67.3-72.6	1709-1844	16	5	4
36 914	7	73.3-79.9	1861-2030	17	5	4
42 1067	7	80.6-84.6	2047-2148	18	6	5
48 1219	9	85.3-87.9	2165-2233	19	7	5
54 1372	9	88.6-91.9	2250-2335	20	7	6
60 1524	11	92.6-95.2	2351-2419	21	8	6
72 1829	13	95.9-98.6	2436-2504	22	9	7
84 2134	15	99.2-103.2	2521-2622	23	11	8
96 2438	17	103.9-109.2	2639-2774	24	12	9
120 3048	21	109.9-118.6	2791-3011	25	15	11
144 3658	25	119.2-119.9	3028-3045	26	17	13
	use an odd number of n 6 in (152 mm) centerline	To avoid sprocket interference with stainless steel links, see the sprocket installation			2 in (305 mm) ne spacing	

1.0 0.9 0.8 0.7 0.6 0.5 0.4 12T 0.3 0.2 SPEED/LENGTH RATIO (V/L)

Strength Factor

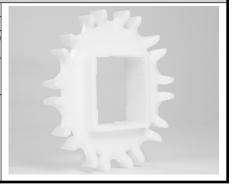
Divide belt speed "V" by the shaft centerline distance "L". Strength Factor is found at intersection of speed/length ratio and appropriate sprocket line. See Belt Selection Instructions for more information.

V = ft/min (m/min)

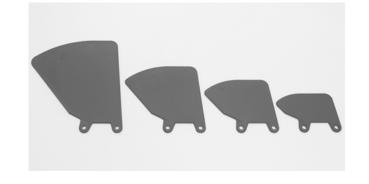
T = number of teeth L = ft (m)

¹ If belt width exceeds a number listed in the table, see the sprocket and support material minimums for the next larger width range. Belts are available in 0.66 in (16.8 mm) increments beginning with minimum width of 2 in (51 mm). If the actual width is critical, contact Intralox Customer Service.

² All sprockets are to be locked in place on the shaft. Use appropriate locking collars to restrict axial movement.


							Nylon	Sproc	kets	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A [,]	vailable B	Bore Size	S
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in	in	mm	mm
10	6.5	165	6.2	157	1.0	25	Custom	Custom	50,	Custon
(4.70%)							Order	Order	60,	Order
(**************************************									70,	
									80,	
									90	
									and	
									100	
12	7.78	196	7.5	191	1.0	25	Custom	Custom	50,	50,
(3.29%)							Order	Order	60,	60,
(3 3 3 3 7									70,	70,
									80,	80,
									90	90
									and	
									100	
 U.S. ke 	v sizes o	on roun	d bore s	sprocke	ts confo	orm to A	NSI stanc	lard B17.	1-1967 (R1989)

- U.S. key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.
- All sprockets are to be locked in place on shaft.


					Bui	ldup F	Resista	nt Ace	tal Sp	rocket
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	ore Size	s
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in	in	mm	mm
10	6.5	165	6.2	157	1.5	38		2.5		60 ²
(4.89%)										

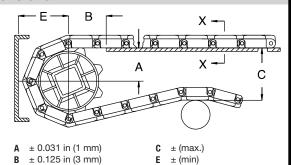
- Designed to work with the Round Hole Enhanced belt in freezer tunnel applications.
 Contact Intralox Customer Service for other applications.
- All sprockets are to be locked in place on shaft.

		Univ	versal Sideguards
Available Height		Available Materials	
in	mm	Available iviaterials	
2	51	Blue polypropylene	
3	76	Blue polypropylene	
4	102	Blue polypropylene	
6	152	Blue polypropylene	

- Part of the Intralox EZ Clean product line.
- Standard sideguard orientation is angled inward toward the product (product friendly). If needed, sideguards can be angled outward toward the conveyor.
- Minimum indent at edges: 2.0 in (51 mm).
- Minimum back bend radius: 4.5 in (115 mm).

¹ Contact Intralox Customer Service for lead times.

² Available as standard 60-mm square bore or available with four retention notches.



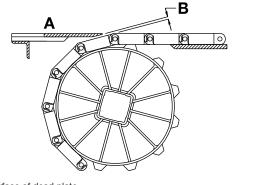
Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in anv design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

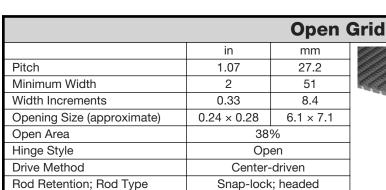
For complete descriptions of the dimensions, see Basic Conveyor Frame Requirements.

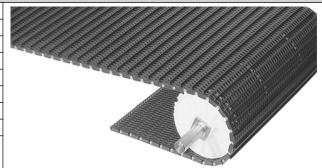
SERIES 888

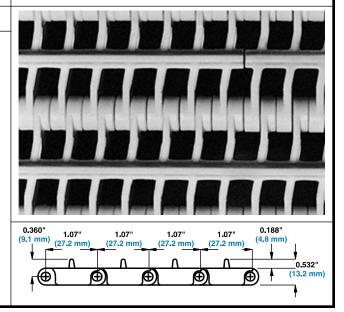

Sp	rocket Des	scription	Α		В		С		E	
Pitch D	Diameter	No. Teeth	Range (Bottom to Top)		in	mm	in	mm	in	mm
in	mm	No. reeur	in	mm	""	111111	111	mm	111	111111
6.5	165	10	2.77-2.925	70-74	3.00	76	6.5	165	3.61	92
7.7	196	12	3.42-3.55	87-90	3.00	76	7.9	201	4.24	108

Dead Plate Gap

A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

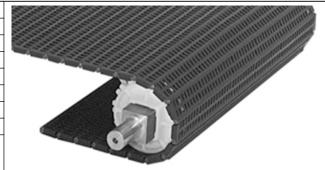

When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.


Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.


- A Top surface of dead plate
- B Dead plate gap

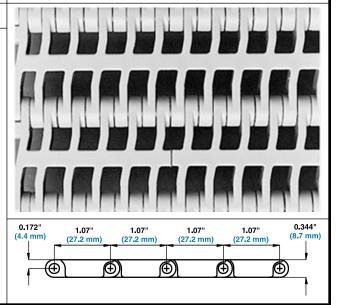
	Sprocket Description	Gap			
Pitch D	iameter	No. Teeth	in	mm	
in	mm	No. Teetii	ın		
6.5	165	10	0.158	4.0	
7.7	196	12	0.132	3.4	

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- · Large, open area provides excellent drainage.
- Low-profile transverse ridges help move product up inclines and down declines.
- Not recommended for product accumulation conditions. Contact Intralox Sales Engineering for more information.
- Transverse ridge height: 0.188 in (4.8 mm).
- Normal ridge indent: 0.25 in (6.4 mm).

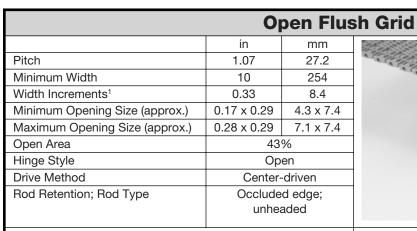


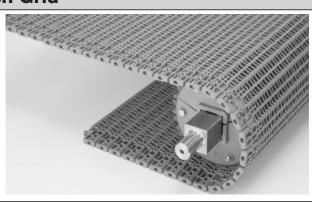
Belt Data							
Belt Material	Standard Rod Material Ø 0.18 in (4.6 mm)	Belt Strength		Temperature Range (continuous)		Belt Weight	
	0.16 (4.6 11111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.81	3.95
Polyethylene	Polyethylene	350	520	-50 to 150	-46 to 66	0.84	4.09
Acetal	Polypropylene	1480	2200	34 to 200	1 to 93	1.26	6.14
Acetal ¹	Polyethylene	1000	1490	-50 to 70	-46 to 21	1.26	6.14

¹ Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.

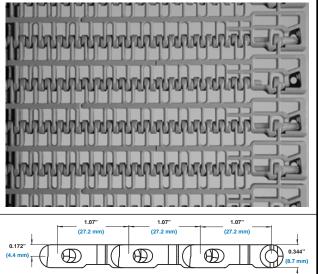


		Flush	Grid
	in	mm	
Pitch	1.07	27.2	
Minimum Width	2	51	
Width Increments	0.33	8.4	-
Opening Size (approximate)	0.24×0.28	6.1 × 7.1	
Open Area	38	%	
Hinge Style	Ор	en	
Drive Method	Center-		
Rod Retention; Rod Type	Snap-lock	k; headed	

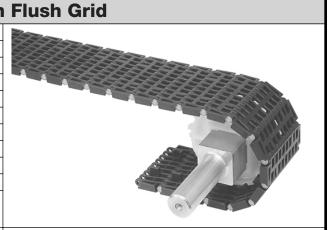



- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Open pattern with smooth upper surface and fully flush edges.
- HR nylon belts use short rodlets to hold the main hinge rod in place. The rodlets are made from the same material as the main rod.
- Provides excellent lateral movement of containers.
- Flights and sideguards are available.

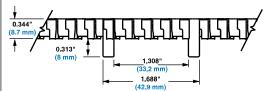
SERIES 900



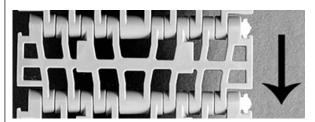
		Belt Data					
Belt material	Standard rod material Ø 0.18 in (4.6 mm)	Belt strength		Temperature range (continuous)		Belt weight	
	0.16 111 (4.6 11111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.76	3.70
Enduralox polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.76	3.70
Polyethylene	Polyethylene	350	520	-50 to 150	-46 to 66	0.81	3.96
Acetal	Polypropylene	1480	2200	34 to 200	1 to 93	1.15	5.62
HSEC acetal	Polypropylene	800	1190	34 to 200	1 to 93	1.15	5.62
Hi-Temp	Hi-Temp	1200	1786	70 to 400	21 to 204	1.08	5.27
FR TPES	Polypropylene	750	1120	40 to 150	4 to 66	1.19	5.81
HR nylon	HR nylon	1200	1790	-50 to 240	-46 to 116	1.10	5.40
HHR nylon	HHR nylon	1200	1790	-50 to 310	-46 to 154	1.10	5.40
Acetal ¹	Polyethylene	1000	1490	-50 to 70	-46 to 21	1.15	5.62
Detectable polypropylene A22	Polypropylene	350	521	34 to 150	1 to 66	0.89	4.35



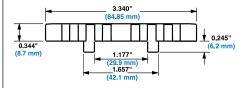
- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Open pattern with a smooth upper surface and fully flush edges.
- Flights are available in HHR nylon material only.
- Flush edge accommodates special abrasion resistant nylon rod growth for belt widths that are 42 in (1066 mm) or narrower.
- To accommodate the rod retention design, ensure that outer sprockets are indented 2.5 in (63.5 mm) from the edge of the belt to the centerline of the sprocket.


Belt Data							
Belt material	Standard rod material Ø 0.180 in (4.6 mm)	Belt strength		Temperature range (continuous)		Belt weight	
	0.180 iii (4.6 iiiii)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.76	3.71
Acetal	Polypropylene	1480	2200	34 to 200	1 to 93	1.10	5.37
HR nylon	HR nylon	1200	1786	-50 to 240	-46 to 116	1.02	4.98
HHR nylon	HHR nylon	1200	1786	-50 to 310	-46 to 154	1.04	5.08

	Mold	to Width	
	in	mm	
Pitch	1.07	27.2	
	3.25	83	
Molded Widths	4.5	114	
Wolded Widths	7.5	191	
	-	85	
Opening Size (approximate)	0.24 × 0.28	6.1 × 7.1	
Open Area	38	%	
Hinge Style	Op	en	
Drive Method	Center-driven		
Rod Retention; Rod Type	Snap-lock	k; headed	



- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Tracking tabs provide lateral tracking.
- Width tolerances for the Series 900 Mold To Width belts are +0.000/-0.020 in (+0.000/-0.500 mm).
- One sprocket can be placed on the 3.25 in (83 mm) and 85-mm mold to width belt. Up to three sprockets can be placed on the 4.5 in (114 mm) mold to width belt. Up to five sprockets can be placed on the 7.5 in (191 mm) mold to width belt.
- The Series 900 Mold To Width belt is not compatible with sprockets that have a pitch diameter smaller than 3.5 in (89 mm) pitch diameter (10 tooth) sprocket. If a 3.5 in (89 mm) pitch diameter is required, do not use a split sprocket.
- Series 900 Mold To Width belts are boxed in 10 ft. (3 m) increments.

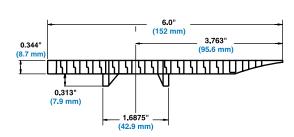


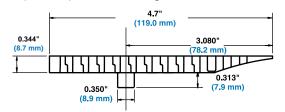
Series 900 Flush Grid Mold to Width

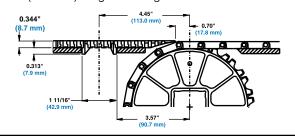
Arrow indicates preferred running direction



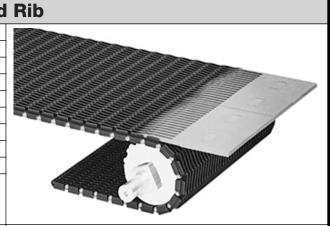
Series 900 Flush Grid 85 mm Mold to Width


	Belt Data										
Belt \	Width	Belt Material	Standard Rod Material Ø 0.18 in (4.6 mm)	Belt Strength				Temperature Range (continuous)		Belt W	/eight
inch	(mm)		9 0.16 111 (4.6 11111)	lb	kg	°F	°C	lb/ft	kg/m		
3.25	83	Polypropylene	Nylon	130	59	34 to 220	1 to 104	0.31	0.46		
3.25	83	Acetal	Nylon	250	113	-50 to 200	-46 to 93	0.42	0.62		
4.5	114	Polypropylene	Nylon	263	120	34 to 220	1 to 104	0.39	0.58		
4.5	114	Acetal	Nylon	555	252	-50 to 200	-46 to 93	0.54	0.80		
7.5	191	Polypropylene	Nylon	438	199	34 to 220	1 to 104	0.59	0.88		
7.5	191	Acetal	Nylon	800	363	-50 to 200	-46 to 93	0.85	1.26		
	85	Acetal	Nylon	275	125	-50 to 200	-46 to 93	0.38	0.57		

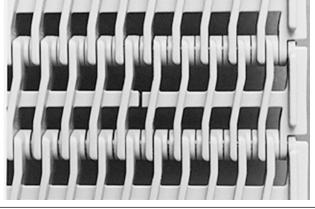

OI	NEPIECE ¹	[™] Live T	ransfer Flush Grid
	in	mm	
Pitch	1.07	27.2	
Minimum Width	4.7	119	
Width Increments	0.33	8.4	
Opening Size (approximate)	0.24 × 0.28	6.1 × 7.1	
Open Area	38	%	
Hinge Style	Ор	en	
Drive Method	Center-driven		
Rod Retention; Rod Type	Snap-lock	k; headed	

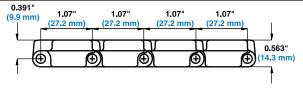

- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Transfer edge is an integral part of this belt.
- Nylon rods provide superior wear resistance.
- Addition of a fixed frame support can be necessary. The support ensures that the transfer belt does not snag when it intersects with the takeaway belt. Add support below the transfer belt, before the transfer. See Series 900, Series 1100, and Series 1400 ONEPIECE Live Transfer Belts for more information.
- For custom belt widths, contact Intralox Customer Service.
- Available in 10 ft (3 m) length increments.
- Also available in a 4.7 in (119 mm) wide single-tracking tab belt and 6 in (152 mm) wide double-tracking tab belt.
- Molded tracking tabs fit into standard 1.75 in (44.5 mm) wearstrip tracks, ensuring proper belt alignment.
- For belt-strength calculations, subtract 1.5 in (38 mm) from the actual belt width.
- When moving products from transfer belt to takeaway belt, ensure the transfer belt surface is no more than 0.06 in (1.5 mm) above the takeaway belt surface. When product is moving from the infeed belt onto the transfer belt, ensure the belts surfaces are level.
- Do not use with sprockets smaller than a 3.5 in (89 mm) pitch diameter (10 tooth) sprocket. If a 3.5 in (89 mm) pitch diameter is required, do not use a split sprocket.

6.0 in (152 mm) Double tracking tab belt

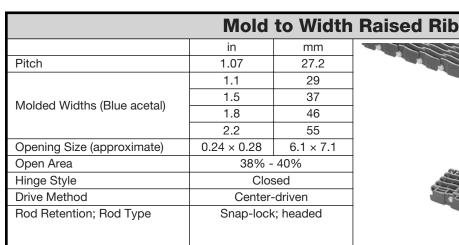


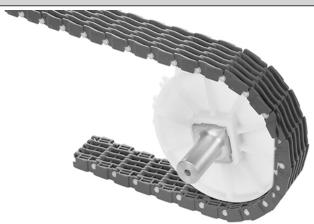
4.7 in (119 mm) Single tracking tab belt

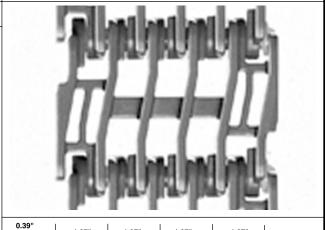


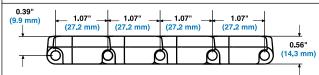

Belt Data										
Belt material	Standard rod material Ø 0.18 in (4.6 mm)	Belt strength		Temperature range (continuous)		Belt weight				
	0.18 111 (4.6 111111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²			
Polypropylene	Nylon	700	1040	34 to 220	1 to 104	0.93	4.54			
Acetal	Nylon	1480	2200	-50 to 200	-46 to 93	1.15	5.62			
FR TPES	Nylon	1000	1490	40 to 150	4 to 66	1.63	7.95			

		Raised		
	in	mm		
Pitch	1.07	27.2		
Minimum Width	2	51		
Width Increments	0.33	8.4		
Opening Size (approximate)	0.24 × 0.28	6.1 × 7.1		
Open Area	38	%		
Product Contact Area	35	%		
Hinge Style	Ор	en		
Drive Method	Center-	-driven		
Rod Retention; Rod Type	Snap-lock; headed			

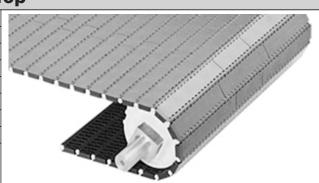

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- HR nylon belts use short rodlets to hold the main hinge rod in place. The rodlets are made from the same material as the main rod.
- Use HR nylon in dry, elevated-temperature applications.
- Can be used with finger transfer plates to eliminate product tippage and hang-ups.
- Raised Ribs extend 3/16 in (4.7 mm) above basic module, with fully flush edges.

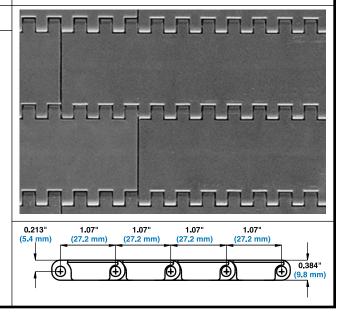



Belt Data										
Belt material	Standard rod material Ø 0.18 in (4.6 mm)	Belt strength			ture range nuous)	Belt weight				
	0. 18 111 (4.8 111111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²			
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	1.07	5.21			
Enduralox polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	1.07	5.21			
Polyethylene	Polyethylene	350	520	-50 to 150	-46 to 66	1.14	5.57			
Acetal	Polypropylene	1480	2200	34 to 200	1 to 93	1.68	8.19			
HSEC acetal	Polypropylene	800	1190	34 to 200	1 to 93	1.68	8.19			
HR nylon	Nylon	1200	1790	-50 to 240	-46 to 116	1.60	7.80			
HHR nylon	Nylon	1200	1790	-50 to 310	-46 to 154	1.60	7.80			
Acetal ¹	Polyethylene	1000	1490	-50 to 70	-46 to 21	1.68	8.19			

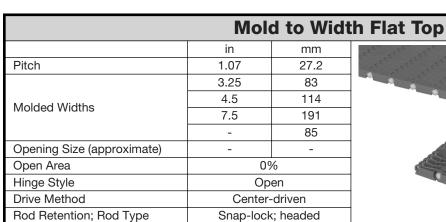

¹ Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.

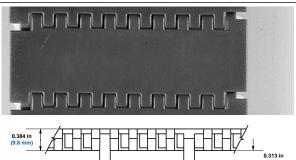


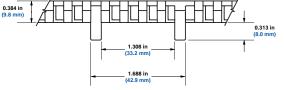

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- · Raised Ribs span the entire belt width, increasing container stability.
- Nylon rodlets provide longer service life.
- Supports both small and larger products, allowing easy product changes.
- The 1.8 in (46 mm) belt is also available in gray polypropylene for applications where higher friction is
- Available in 10 ft (3 m) increments.



	Belt Data										
Belt Width		Belt Material	Standard Rod Material Ø 0.18 in (4.6 mm)	Belt St	rength	•	ure Range nuous)	Belt W	/eight		
inch	(mm)		0.16 111 (4.6 11111)	lb	kg	°F	°C	lb/ft	kg/m		
1.1	29	Acetal	Nylon	140	64	-50 to 200	-46 to 93	0.19	0.29		
1.5	37	Acetal	Nylon	200	91	-50 to 200	-46 to 93	0.23	0.35		
1.8	46	Acetal	Nylon	230	104	-50 to 200	-46 to 93	0.29	0.43		
1.8	46	Polypropylene	Nylon	90	41	34 to 220	1 to 104	0.19	0.28		
2.2	56	Acetal	Nylon	200¹	91 ¹	-50 to 200	-46 to 93	0.34	0.50		



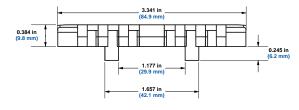

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- · Smooth, closed surface with fully flush edges.
- HR nylon belts use short rodlets to hold the main hinge rod in place. The rodlets are made from the same material as the main rod.
- Use HR nylon in dry, elevated-temperature applications.
- Ideal for handling glass and other containers.



Belt Data										
Belt material	Standard rod material Ø 0.18 in (4.6 mm)	Belt strength			ture range nuous)	Belt weight				
	0.18 (4.0 11(11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²			
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.96	4.69			
Polyethylene	Polyethylene	350	520	-50 to 150	-46 to 66	1.01	4.95			
Acetal	Polypropylene	1480	2200	34 to 200	1 to 93	1.50	7.30			
HSEC acetal	Polypropylene	800	1190	34 to 200	1 to 93	1.50	7.30			
HR nylon	Nylon	1200	1790	-50 to 240	-46 to 116	1.40	6.80			
HHR nylon	Nylon	1200	1790	-50 to 310	-46 to 154	1.40	6.80			
Acetal ¹	Polyethylene	1000	1490	-50 to 70	-46 to 21	1.50	7.30			
Detectable polypropylene A22	Polyethylene	650	967	34 to 150	1 to 66	2.21	10.79			

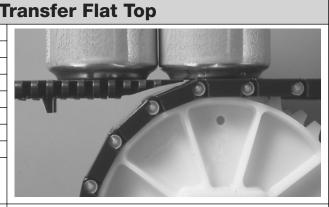


- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Smooth, closed surface with fully flush edges.
- Tracking tabs provide lateral tracking.
- Belts are boxed in 10 ft (3 m) increments.
- One sprocket can be placed on the 3.25 in (83 mm) and 85-mm mold to width belt. Up to three sprockets can be placed on the 4.5 in (114 mm) mold to width belt. Up to five sprockets can be placed on the 7.5 in (191 mm) mold to width belt.
- Do not use with sprockets smaller than a 3.5 in (89 mm) pitch diameter (10 tooth) sprocket. If a 3.5 in (89 mm) pitch diameter is required, do not use a split sprocket.

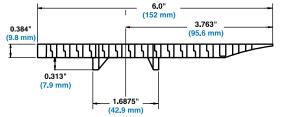


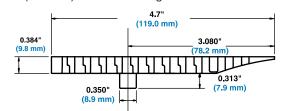
Series 900 Flat Top Mold to Width

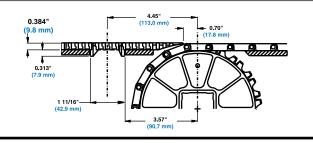
Arrow indicates preferred running direction



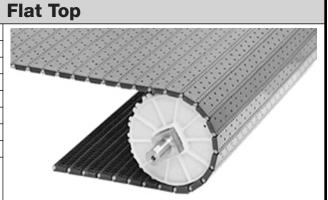
Series 900 Flat Top 85 mm Mold to Width


			Ве	It Data					
Belt '	Width	Belt Material	Standard Rod Material Ø 0.18 in (4.6 mm)	Belt Strength			ure Range nuous)	Belt W	/eight
inch	(mm)		0.18 111 (4.8 11111)	lb	kg	°F	°C	lb/ft	kg/m
3.25	83	Polypropylene	Nylon	130	59	34 to 220	1 to 104	0.37	0.55
3.25	83	Acetal	Nylon	250	113	-50 to 200	-46 to 93	0.52	0.77
4.5	114	Polypropylene	Nylon	263	120	34 to 220	1 to 104	0.52	0.77
4.5	114	Acetal	Nylon	555	252	-50 to 200	-46 to 93	0.74	1.10
7.5	191	Polypropylene	Nylon	438	199	34 to 220	1 to 104	0.83	1.24
7.5	191	Acetal	Nylon	800	363	-50 to 200	-46 to 93	1.18	1.76
	85	Acetal	Nylon	500	227	-50 to 200	-46 to 93	0.50	0.74


	ONEPIECE	[™] Live 1
	in	mm
Pitch	1.07	27.2
Minimum Width	4.7	119
Width Increments	0.33	8.4
Opening Size (approximate)	-	-
Open Area	09	6
Hinge Style	Clos	sed
Drive Method	Center-	-driven
Rod Retention; Rod Type	Snap-lock	; headed

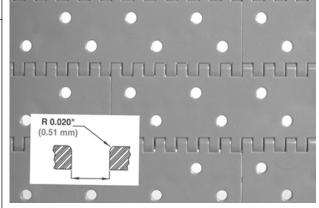

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Transfer edge is an integral part of the belt.
- Nylon rods provide superior wear resistance.
- Addition of a fixed frame support can be necessary. The support ensures that the transfer belt does not snag when it intersects with the takeaway belt. Add support below the transfer belt, before the transfer. See Series 900, Series 1100, and Series 1400 ONEPIECE Live Transfer Belts for more information.
- When moving products from transfer belt to takeaway belt, ensure the transfer belt surface is no more than 0.06 in (1.5 mm) above the takeaway belt surface. When product is moving from the infeed belt onto the transfer belt, ensure the belts surfaces are level.
- For custom belt widths, contact Customer Service.
- Available in 10 ft (3 m) increments.
- Also available in a 4.7 in (119 mm) wide single tracking tab belt and 6 in (152 mm) wide double tracking tab belt.
- Molded tracking tabs fit into standard 1.75 in (44.5 mm) wearstrip tracks ensuring proper belt alignment.
- Do not use with sprockets smaller than a 3.5 in (89 mm) pitch diameter (10 tooth) sprocket. If a 3.5 in (89 mm) pitch diameter is required, do not use a split sprocket.

6.0 in (152 mm) Double tracking tab belt

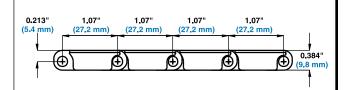

4.7 in (119 mm) Single tracking tab belt

Belt Data									
Belt material	Standard rod material Ø 0.18 in (4.6 mm)	Belt strength		Temperature range (continuous)		Belt weight			
	0.16 (11 (4.6 (11(11))	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²		
Polypropylene	Nylon	700	1040	34 to 220	1 to 104	0.93	4.54		
Acetal	Nylon	1480	2200	-50 to 200	-46 to 93	1.50	7.30		

	Pe	rforated	
	in	mm	
Pitch	1.07	27.2	
Minimum Width	2	51	
Width Increments	0.33	8.4	
Opening Size (approximate)	See Product Notes		
Open Area	See Produ	uct Notes	
Hinge Style	Clos	sed	
Drive Method	Center-	-driven	
Rod Retention; Rod Type	Snap-lock	; headed	

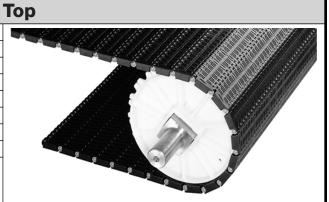


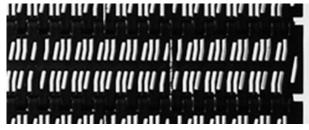
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Hole sizes include 3% open area at the hinge.
- Holes have a radiused top edge, allowing quiet operation and good vacuum performance.
- Other hole dimensions and patterns can be created by drilling Series 900 Flat Top.
- HR nylon belts use short rodlets to hold the main hinge rod in place and are made from the same material as the main rod.
- Designed for vacuum transfer applications, with a scalloped underside to reduce carryway blockage.
- Use stainless steel split sprockets in elevatedtemperatures.
- Available hole sizes:


Ø 0.125 in (3.2 mm) - 5% Open Area

Ø 0.15625 in (4.0 mm) - 6% Open Area

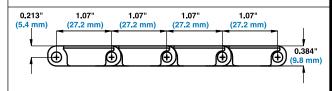
Ø 0.1875 in (4.8 mm) - 8% Open Area


Inset: molded hole detail

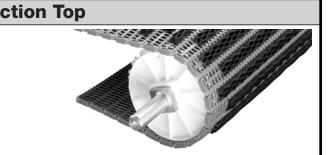

	Belt Data										
Belt material	Standard rod material Ø	Belt strength		Temperature range (continuous)		Belt weight 1/8 in		Belt weight 5/32 in		Belt weight 3/16 in	
	0.18 in (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	lb/ft²	kg/m²	lb/ft²	kg/m²
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	_	-	0.93	4.54	_	_
Polyethylene	Polyethylene	350	520	-50 to 150	-46 to 66	_	-	0.98	4.79	_	_
Acetal	Polypropylene	1480	2200	34 to 200	1 to 93	1.48	7.23	1.46	7.11	1.43	6.98
HSEC acetal	Polypropylene	800	1190	34 to 200	1 to 93	_	-	1.46	7.11	_	_
FR TPES	Polypropylene	750	1120	40 to 150	4 to 66	_	-	1.59	7.76	_	_
HR nylon	Nylon	1200	1790	-50 to 240	-46 to 116	_	-	1.40	6.80	_	_
Acetal ¹	Polyethylene	1000	1490	-50 to 70	-46 to 21	1.48	7.23	1.46	7.11	1.43	6.98
UVFR	UVFR	700	1042	-34 to 200	1 to 93	2.04	9.96	2.04	9.96	2.04	9.96

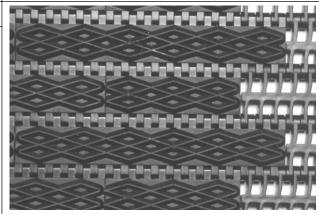
¹ Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating. 1/8 in (3.2 mm) and 3/16 in (4.8 mm) hole sizes are available in acetal only.

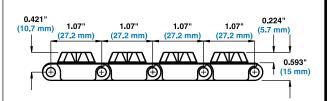
		Mesh
	in	mm
Pitch	1.07	27.2
Minimum Width	2	51
Width Increments	0.33	8.4
Opening Size (approximate)	0.05 × 0.31	1.3 × 7.9
Open Area	24	%
Hinge Style	Ор	en
Drive Method	Center-	-driven
Rod Retention; Rod Type	Snap-lock	k; headed


- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Fully flush edges.
- Ideal for fruit and vegetable processing, especially for stemmed products and dewatering applications.

Top surface

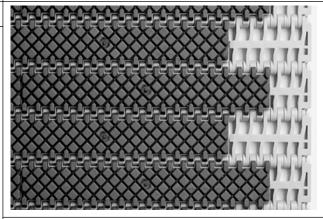

Underside surface

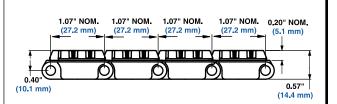

Belt Data									
Belt material	Standard rod material Ø 0.18 in (4.6 mm)	Belt strength		Temperature range (continuous)		Belt weight			
	0.18 111 (4.0 11111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²		
Acetal	Polypropylene	1480	2200	34 to 200	1 to 93	1.39	6.79		
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.93	4.55		
Polyethylene	Polyethylene	350	520	-50 to 150	-46 to 66	0.99	4.84		



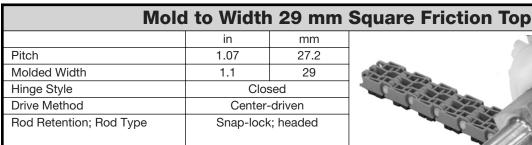
	Dia	mond Fri
	in	mm
Pitch	1.07	27.2
Minimum Width	2.0	50.8
Width Increments	0.33	8.4
Hinge Style	Ор	en
Drive Method	Center-	-driven
Rod Retention; Rod Type	Snap-lock	k; headed

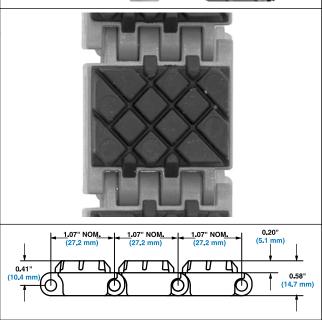
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Two-material rubber modules provide a high friction surface without interfering with carryways and sprockets.
- Available in gray PP with black rubber, white PP with white rubber, and natural PE with white rubber.
- Temperature, environmental conditions, and product characteristics affect the effective maximum degree of incline. Take these items into consideration when designing conveyor systems utilizing these belts.
- Not recommended for product accumulation conditions. Contact Intralox Sales Engineering for information about friction values between product and belt.
- If a center-drive setup is used, it can be necessary to retain the belt laterally, by placing collars at the backbend roller before the drive. Abrasion resistant rods are recommended.
- Minimum nominal alternating edge indents: 1 in (25 mm) and 1.7 in (43 mm).


	Belt Data										
Base Belt	Base/Friction Standard Rod Material Ø 0.18 Belt Strength (continuous)		S I Relt Weight			Friction Top	Age Accep	,			
Material	Color	in (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	Hardness	FDA (USA)	EU MC ^b
Polypropylene	Gray/Black	Polypropylene	1000	1490	34 to 150	1 to 66	1.40	6.83	45 Shore A	а	
Polypropylene	White/White	Polypropylene	1000	1490	34 to 150	1 to 66	1.40	6.83	56 Shore A	а	С
Polyethylene	Natural/White	Polyethylene	350	520	-50 to 120	-46 to 49	1.50	7.32	56 Shore A	а	С


- · Fully compliant
- a FDA Compliant with Restriction: Do not use in direct contact with fatty foods.
- b European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.
- c EU compliant with Restriction: Do not use in direct contact with fatty foods.

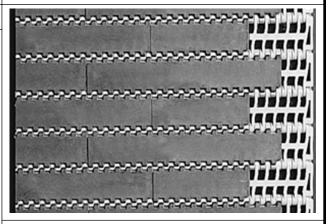
	Sq	uare Fric
	in	mm
Pitch	1.07	27.2
Minimum Width	3.0	76
Width Increments	0.33	8.4
Hinge Style	Op	en
Drive Method	Center-	-driven
Rod Retention; Rod Type	Snap-lock	k; headed

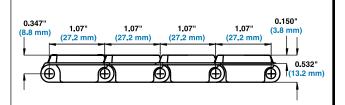

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a helt.
- Two-material rubber modules provide a high-friction surface without interfering with carryways and sprockets.
- Available in gray PP with black rubber and white PP with white rubber.
- Not recommended for product accumulation conditions.
 Contact Intralox Sales Engineering for information about friction values between product and belt.
- Temperature, environmental conditions, and product characteristics affect the effective maximum degree of incline. Consider these factors when designing conveyor systems to use these belts.
- If a center-drive setup is used, it can be necessary to retain the belt laterally, by placing collars at the backbend roller before the drive. Abrasion resistant rods are recommended.
- Minimum nominal alternating edge indents: 1 in (25 mm) and 1.7 in and (43 mm).


	Belt Data											
Base Belt	Base/Friction	Standard Rod Material Ø 0.18			Temperature Range (continuous)		Belt Weight		Friction Top	Age Accep	ncy tability	
Material	Color	in (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	Hardness	FDA (USA)	EU MC ^b	
Polypropylene	Gray/Black	Polypropylene	1000	1490	34 to 150	1 to 66	1.50	7.32	45 Shore A	а		
Polypropylene	White/White	Polypropylene	1000	1490	34 to 150	1 to 66	1.50	7.32	56 Shore A	а	С	

- - Fully compliant
- a FDA Compliant with Restriction: Do not use in direct contact with fatty foods.
- b European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.
- c EU compliant with Restriction: Do not use in direct contact with fatty foods.

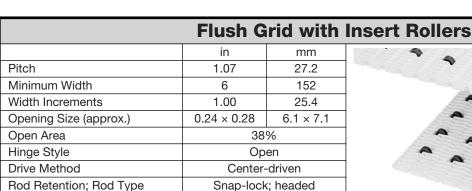
- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Two-material rubber modules provide a high-friction surface without interfering with carryways and sprockets.
- Available in gray PP with black rubber, gray acetal with black rubber, and blue acetal with black rubber.
- Not recommended for product accumulation conditions. Contact Intralox Sales Engineering for information about friction values between product and belt.

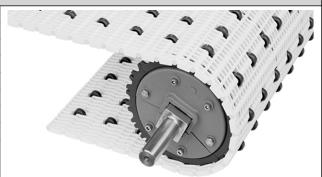

	Belt Data										
Base Belt	Base/Friction Standard Rod Material Ø 0.18		Belt Strength		Temperature Range (continuous)		Belt Weight		Friction Top	Age Accep	ncy tability
Material	Color	in (4.6 mm)	lb	kg	°F	°C	lb/ft	kg/m	Hardness	FDA (USA)	EU MC ^b
Polypropylene	Gray/Black	Nylon	65	29	34 to 150	1 to 66	0.17	0.25	45 Shore A	а	
Acetal	Gray/Black	Nylon	140	64	-10 to 130	-23 to 54	0.21	0.31	54 Shore A		
Acetal	Blue/Black	Nylon	140	64	-10 to 130	-23 to 54	0.21	0.31	54 Shore A		

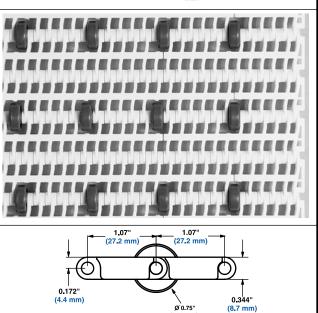

- Fully compliant
- a FDA Compliant with Restriction: Do not use in direct contact with fatty foods.
- b European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.
- c EU compliant with Restriction: Do not use in direct contact with fatty foods.

	F	lat Fricti
	in	mm
Pitch	1.07	27.2
Minimum Width	2.0	50.8
Width Increments	0.33	8.4
Hinge Style	Ор	en
Drive Method	Center-	-driven
Rod Retention; Rod Type	Snap-lock	; headed

on Top

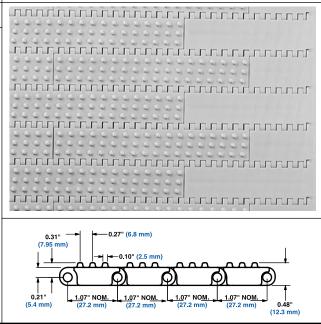

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Two-material rubber modules provide a high-friction surface without interfering with carryways and sprockets.
- Available in gray PP with black rubber and white PP with white rubber.
- Not recommended for product accumulation conditions.
 Contact Intralox Sales Engineering for information about friction values between product and belt.
- If a center-drive setup is used, it can be necessary to retain the belt laterally, by placing collars at the backbend roller before the drive. Abrasion resistant rods are recommended.
- Temperature, environmental conditions, and product characteristics affect the effective maximum degree of incline. Consider these factors when designing conveyor systems to use these belts.
- Minimum nominal alternating edge indents: 1 in (25 mm) and 1.7 in (43 mm).

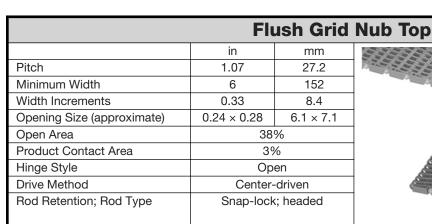


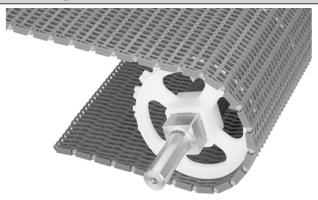

	Belt Data											
Base Belt	Base/Friction	Standard Rod Material Ø 0.18	Belt Strength		Temperature Range (continuous)		Belt Weight		Friction Top	Agency Acceptability		
Material	Color	in (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	Hardness	FDA (USA)	EU MC ^b	
Polypropylene	Gray/Black	Polypropylene	1000	1490	34 to 150	1 to 66	1.40	6.83	45 Shore A	а		
Polypropylene	White/White	Polypropylene	1000	1490	34 to 150	1 to 66	1.40	6.83	56 Shore A	а	С	
Polypropylene	High- Performance FT Blue/Blue	Polypropylene	1000	1490	34 to 212	1 to 100	1.40	6.83	59 Shore A	а	O	

- - Fully compliant
- a FDA Compliant with Restriction: Do not use in direct contact with fatty foods.
- b European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.
- c EU compliant with Restriction: Do not use in direct contact with fatty foods.

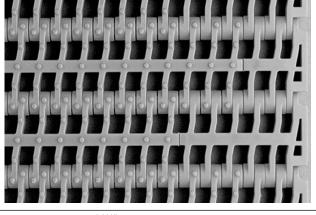
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- For applications where low back pressure accumulation is required.
- Uses acetal rollers.
- Back-up load is 5% to 10% of product weight.
- Do not place sprockets inline with rollers.
- For low back pressure applications, place wearstrips between rollers. For driven applications, place wearstrip directly under rollers.
- For custom roller-placement options, contact Intralox Customer Service.
- Standard roller spacings across belt width: 2 in (51 mm), 3 in (76 mm), or 4 in (102 mm) inline or staggered.
- Standard roller spacings along belt length: 1.07 in (27.2 mm), 2.14 in (54.4 mm).
- Minimum roller indent: 1.0 in (25.4 mm).

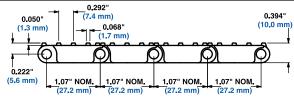

	Belt Data											
	Ctandard Dad		Belt Strength					Tamparat				
Belt Material	Standard Rod Material Ø 0.18		Roller Width Spacing					Temperature Range (continuous) Belt Weight			Veight	
Deit Material	in (4.6 mm)	2 in	51 mm	3 in	76 mm	4 in	102 mm	(Continuous)				
	111 (4.0 111111)	lb/ft	kg/m	lb/ft	kg/m	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	
Polypropylene	Polypropylene	490	730	550	820	590	880	34 to 220	1 to 104	0.76	3.71	
Acetal	Polypropylene	1030	1530	1170	1740	1240	1850	34 to 200	1 to 93	1.15	5.61	


		Nub 1
	in	mm
Pitch	1.07	27.2
Minimum Width	10	254
Width Increments	0.33	8.4
Open Area	09	%
Product Contact Area	79	%
Hinge Style	Clos	sed
Drive Method	Center-	-driven
Rod Retention; Rod Type	Snap-lock	c; headed

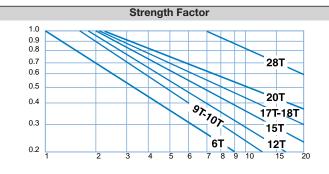

Top

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Fully flush edges.
- Ideal for batch-off applications.
- Minimum nominal alternating edge indents: 2 in (51 mm) & 3 in (76 mm).



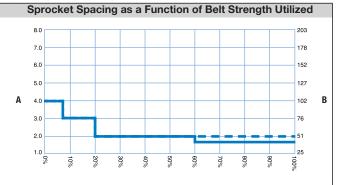

Belt Data								
Belt material	Standard rod material Ø 0.18 in (4.6 mm)	Belt str	ength1	•	ture range nuous)	Belt weight		
	0.10 111 (4.0 11111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.98	4.78	

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- · Fully flush edges.
- Built with Flush Grid edge modules.
- Not recommended for product accumulation conditions. Contact Intralox Sales Engineering for information about friction values between product and belt.
- Can only be used with Series 900 Flush Grid base flights.
- Minimum nominal alternating edge indents: 1 in (25 mm) and 2 in (51 mm) pattern.


Belt Data								
Belt Material	Standard Rod Material Ø 0.18 in (4.6 mm)	Belt St	rength ¹	Temperat (conti	ure Range nuous)	Belt Weight		
	9 0.18 111 (4.0 11111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.80	3.91	

¹ When using steel sprockets, the belt strength for polyethylene is 240 lb/ft (360 kg/m).

SERIES 900


		Sprocket a	nd Support Quantity Refere	nce
Belt Wid	dth Range ¹	Minimum Number of	W	earstrips
in	mm	Sprockets Per Shaft ²	Carryway	Returnway ³
2	51	1	2	2
4	102	1	2	2
6	152	2	2	2
7	178	2	3	2
8	203	2	3	2
10	254	3	3	2
12	305	3	3	2
14	356	5	4	3
15	381	5	4	3
16	406	5	4	3
18	457	5	4	3
20	508	5	5	3
24	610	7	5	3
30	762	9	6	4
32	813	9	7	4
36	914	9	7	4
42	1067	11	8	5
48	1219	13	9	5
54	1372	15	10	6
60	1524	15	11	6
72	1829	19	13	7
84	2134	21	15	8
96	2438	25	17	9
120	3048	31	21	11
144	3658	37	25	13
		odd number of sprockets at	Maximum 6 in (152 mm) centerline	Maximum 12 in (305 mm) centerline
maxim	num 4 in (102 m	m) centerline spacing.4	spacing.	spacing.

Speed/length ratio (V/L)

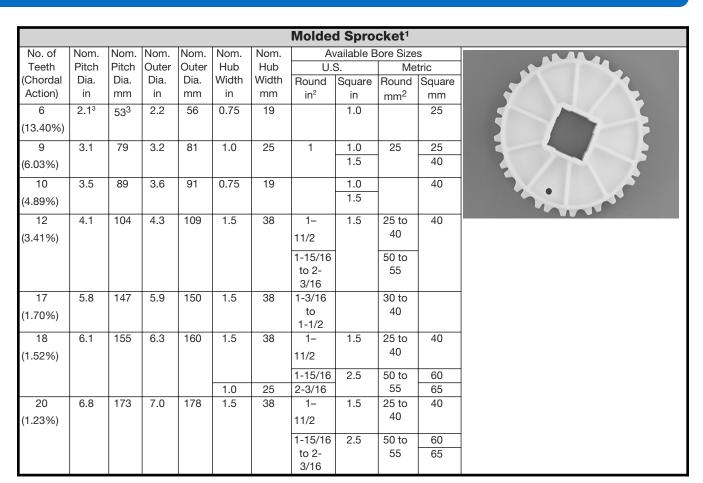
Divide belt speed (V) by the shaft centerline distance (L). Strength factor is found at intersection of the speed/length ratio and the appropriate sprocket line. See Belt Selection Instructions for more information.

V = ft/min (m/min); T = number of teeth; L = ft (m)

Percentage of allowable belt strength utilized

- A sprocket spacing, in
- sprocket spacing, mm

Solid line: Flush Grid Dashed line: Open Flush Grid


¹ If your belt width exceeds a number listed in the table, see the sprocket and support material minimums for the next larger width range listed. Belts are available in 0.33 in (8.4 mm) increments beginning with minimum width of 2 in (51 mm). If the actual width is critical, contact Intralox Customer Service.

² This number is a minimum. Heavy-load applications can require additional sprockets.

 $^{^{\}scriptscriptstyle 3}$ For Friction Top applications, use caution and contact Intralox Customer Service.

⁴ Lock down the center sprocket. With only two sprockets, fix the sprocket on the drive journal side only. For lockdown location, see Retainer Rings/Center Sprocket Offset.

						E	Z Clea	n [™] Spı	ocket	4	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	ore Size	S	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	
Action)	in	mm	in	mm	in	mm	in ⁵	in	mm ⁵	mm	5
12	4.1	104	4.3	109	1.5	38		1.5		40	
(3.41%)											
18	6.1	155	6.3	160	1.5	38		1.5		40	
(1.52%)											1
											7
											•

¹ Contact Intralox Customer Service for lead times. When using 1.5 in (40 mm) bore polyurethane sprockets, the belt strength for belts rated over 650 lb/ft (967 kg/m) is de-rated to 650 lb/ft (967 kg/m). When using 2.5 in (60 mm) bore polyurethane sprockets, the belt strength for belts rated over 1100 lb/ft (1637 kg/m) is de-rated to 1100 lb/ft (1637 kg/m. All other belts maintain their published rating. The temperature range for polyurethane sprockets is 0°F (-18°C) to 120°F (49°C). Contact Intralox Customer Service for availability of polyurethane sprockets.

² Round bore molded and split sprockets are frequently furnished with two keyways. Use of two keys is NOT REQUIRED nor recommended. Round bore sprockets do not have setscrews for locking the sprockets in place. As with square bore sprockets, only the center-most sprocket must be locked down. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

³ See the Retaining Rings section for more information on retaining the 2.1 in (53 mm) pitch diameter sprocket.

⁴ Contact Intralox Customer Service for lead times. When using when using 1.5 in (40 mm) bore polyurethane sprockets, the belt strength for belts rated over 650 lb/ft (967 kg/m) is de-rated to 650 lb/ft (967 kg/m). When using when using 2.5 in (60 mm) bore polyurethane sprockets, the belt strength for belts rated over 1100 lb/ft (1637 kg/m) is de-rated to 1100 lb/ft (1637 kg/m). All other belts maintain their published rating. The temperature range for polyurethane sprockets is 0°F (-18 °C) to 120°F (49°C). Contact Intralox Customer Service for availability of polyurethane

⁵ Round bore molded and split sprockets are frequently furnished with two keyways. Use of two keys is NOT REQUIRED nor recommended. Round bore sprockets do not have setscrews for locking the sprockets in place. As with square bore sprockets, only the center-most sprocket must be locked down. U.S. key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

						S	plit Me	tal Sp	rocket	1	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A ⁻	vailable E	ore Size	S	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S. S	Sizes	Metric	Sizes	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	1
Action)	in	mm	in	mm	in	mm	in ²	in	mm ²	mm	
10	3.5	89	3.6	91	1.5	38		1.5		40	1
(4.89%)											
12	4.1	104	4.3	109	1.5	38		1.5		40	1
(3.41%)											
15	5.1	130	5.3	135	1.5	38	1-3/16	1.5			1
(2.19%)							1-1/4				
17	5.8	147	6.1	155	1.5	38			40	40	1
(1.70%)											
18	6.1	155	6.3	160	1.5	38	1-1/4	1.5		40	1
(1.52%)							1-1/2	2.5		60	
20	6.8	173	7.0	178	1.5	38	1-1/4	1.5		40	1
(1.23%)								2.5		60	
28 ³	9.8	249	10.0	254	1.5	38		1.5		40	1
(0.63%)								2.5		60	

	Spli	t Met	al wit	h Pol	yureth	nane (l	FDA) J	oining	Plates	Redu
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A [,]	vailable B	ore Size	s
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in⁵	in	mm ⁵	mm
15	5.1	130	5.3	135	1.5	38		1.5		40
(2.19%)										
17	5.8	147	6.1	155	1.5	38				40
(1.70%)										
18	6.1	155	6.3	160	1.5	38		1.5		40
(1.52%)								2.5		60
20	6.8	173	7.0	178	1.5	38		1.5		40
(1.23%)								2.5		
28 ⁶	9.8	249	10.0	254	1.5	38		2.5		60
(0.63%)										

¹ Contact Intralox Customer Service for lead times.

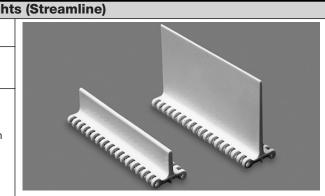
² Round bore molded and split sprockets are frequently furnished with two keyways. Use of two keys is NOT REQUIRED nor recommended. Round bore sprockets do not have setscrews for locking the sprockets in place. As with square bore sprockets, only the center-most sprocket must be locked down. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

³ Do not use 9.8 in (249 mm) pitch diameter 28-tooth split sprockets with any Series 900 style acetal belt. Instead, always use 9.7 in (246 mm) pitch diameter split sprockets. Contact Intralox Customer Service for lead times.

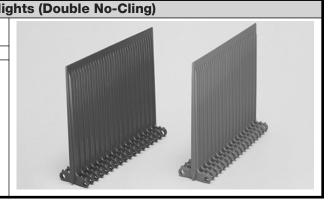
⁴ Contact Intralox Customer Service for lead times.

⁵ Round bore molded and split sprockets are frequently furnished with two keyways. Use of two keys is NOT REQUIRED nor recommended. Round bore sprockets do not have setscrews for locking the sprockets in place. As with square bore sprockets, only the center-most sprocket must be locked down. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

⁶ Do not use 9.8 in (249 mm) pitch diameter 28-tooth split sprockets with any Series 900 style acetal belt. Instead, always use 9.7 in (246 mm) pitch diameter split sprockets. Contact Intralox Customer Service for lead times.


			_							
			N	/lolde	d Toot	th Plat	e Split	Glass	Filled	Nylon
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A ⁻	vailable E	ore Size	S
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in ²	in	mm ²	mm
15	5.1	130	5.3	135	1.5	38	1	1.5	30	40
(2.19%)							1-3/16		40	
17	5.8	147	6.1	155	1.5	38			30	40
(1.70%)									40	
18	6.1	155	6.3	160	1.5	38	1-1/4	1.5		40
(1.52%)							1-1/2	2.5		60
20	6.8	173	7.0	178	1.5	38	1-1/4	1.5		40
(1.23%)								2.5		60

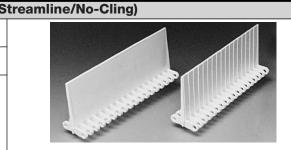
SERIES 900


		Flat Top Base Fligh	
Available F	light Height	Available Materials	
in	mm	Available Materials	
1	25		
2	51	Polypropylene, polyethylene, acetal	
3	76		

- Flat Top flight is smooth (Streamline) on both sides.
- Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.
- Flights can be cut down to custom heights. Minimum height: 0.25 in (6.4 mm).
- Minimum indent without sideguards: 0.7 in (17.8 mm).

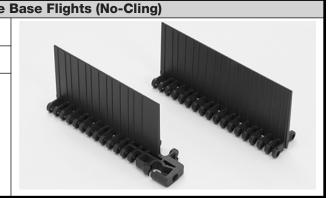
		Flush Grid Nub Top Base Fli			
Available Flight Height		Available Materials			
in	mm	Available iviaterials			
4	102	Polypropylene, acetal			

- No-Cling vertical ribs are on both sides of the flight.
- Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.
- Flights can be cut down to custom heights. Minimum height: 0.25 in (6.4 mm).
- Minimum indent without sideguards: 0.7 in (17.8 mm).

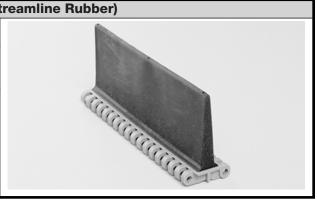


¹ Contact Intralox Customer Service for lead times.

² Round bore molded and split sprockets are frequently furnished with two keyways. Use of two keys is NOT REQUIRED nor recommended. Round bore sprockets do not have setscrews for locking the sprockets in place. As with square bore sprockets, only the center-most sprocket must be locked down. U.S. key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.


		Flush Grid Base Flights (S
Available Flight Height		Available Materials
in	mm	Available Materials
1	25	Polypropylene, polyethylene, acetal,
2	51	HR HHR nylon, HR nylon

- Each flight rises out of the center of its supporting module. Flights are molded as an integral part. No fasteners are required.
- The Streamline side of the flight is smooth and the No-Cling side is vertically ribbed.
- Can be cut down to custom heights. Minimum height: 0.25 in (6.4 mm).
- Minimum indent without sideguards:0.7 in (17.8 mm).

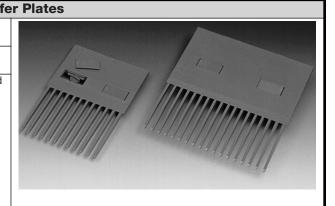

		Open Flush Grid Flush Edge
Available Flight Height		Available Materials
in	mm	Available iviaterials
2	51	Polypropylene, heat resistant (HR)
		nylon, high heat resistant (HHR) nylon

- Flight is ribbed vertically (No-Cling) on both sides.
- Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.
- Flights can be cut down to custom heights. Minimum height: 0.25 in (6.4 mm).
- Flight is molded with a 1 in (25 mm) indent. Can be machined to any indent between 1 in (25 mm) and 3 in (76 mm).

		Flat Top Base Flights (St	9	
Available Flight Height		Available Materials	_	
in	mm	Available iviaterials		
1	25			
2	51	Polypropylene		
3	76			
Contact Introlog Customer Consider for more information				

Contact Intralox Customer Service for more information.

		Sidegua
Available Sizes		Available Materials
in	mm	Available Materials
2	51	Polypropylene, polyethylene, acetal,
		HR nylon, HHR nylon


- Sideguards use a standard overlapping design and are an integral part of the belt, with no fasteners required.
- Standard sideguard orientation is angled inward toward the product (product friendly). If needed, sideguards can be angled outward toward the conveyor.
- When going around the 6, 9, and 10 tooth sprockets, sideguards fan out, opening a gap at the top of the sideguard that can allow small products to fall out. The sideguards stay completely closed when wrapping around the 12 tooth and larger sprockets.
- Minimum indent: 1 in (25.4 mm).
- Standard gap between the sideguards and the edge of a flight: 0.2 in (5 mm).

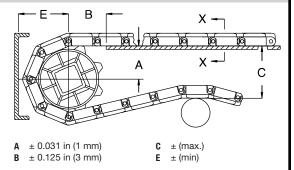
SERIES 900

			Finger Transf	
Available Widths		Number of	Available Materials	
in	mm	Fingers	Available iviaterials	
6	152	18	Acetal	
4	102	12	Acetai	

- Eliminates product transfer and tipping problems. The fingers extend between the belt ribs to allow a smooth continuation of the product flow as the belt engages the sprockets.
- Easily installed on the conveyor frame with the supplied shoulder bolts. Caps easily snap into place over the bolts, and keep foreign materials out of the slots.
- When retrofitting from Series 100 Raised Rib to Series 900 Raised Rib, only use the 4 in (102 mm) 12 finger) width.
- Do not mix 4 in (102 mm) and 6 in (152 mm) wide finger plates.

		Hold Down	
Available	Clearance	Available Materials	
in	mm	Available iviaterials	
0.16	4.1	Acetal	
0.35	8.9	Acetai	

- Tabs are placed on every other row.
- Carryway wearstrips or rollers that engage the tabs are only required at the transition between horizontal sections and angled sections.
 Use a carryway radius design at this transition.
- Ensure that adequate lead-in radii and/or angles are used to prevent the possibility of snagging the tab on the frame.
- The 0.16 in (4.1 mm) tab is available in both Flat Top and Flush Grid styles. The 0.35 in (8.9 mm) tab is available with a Flat Top style. The top of this tab sits 0.04 in below the top of Flat Top belts and is level with the top of Flush Grid belts.
- Hold down tabs do not work with 2.1 in (53 mm) and 3.1 in (79 mm) pitch diameter sprockets. 3.5 in (89 mm) pitch diameter sprockets can be used with a 1.5 in (40 mm) square bore.
- A minimum of 2.7 in (69 mm) is required between tabs to accommodate 1 sprocket.
- Tabs width: 1.4 in (36 mm).
- Minimum indent: 0.7 in (17.8 mm).



Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in any design.

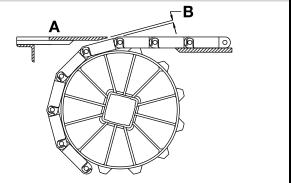
For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see *Basic Conveyor Frame Requirements*.

Sprocket Description			Α		В		С		E	
Pitch Diameter		No. Teeth	Range (Bottom to Top)		in	mm	in	mm	in	mm
in	mm	No. Teetii	in	mm	111	111111	111	111111	111	111111
Series 900 Flat Top, Flush Grid, Mesh Top, Nub Top, Perforated Flat Top ¹										
2.1	53	6	0.75-0.90	19-23	1.25	32	2.28	58	1.51	38
3.1	79	9	1.30-1.39	33-35	1.51	38	3.20	81	1.75	44
3.5	89	10	1.47-1.56	37-40	1.70	43	3.60	91	2.01	51
4.1	104	12	1.82-1.90	46-48	1.74	44	4.25	108	2.51	64
5.1	130	15	2.34-2.40	60-61	2.00	51	5.20	132	2.77	70
5.8	147	17	2.69-2.74	68-70	2.13	54	5.80	147	3.15	80
6.1	155	18	2.86-2.91	73-74	2.20	56	6.20	155	3.30	84
6.8	173	20	3.21-3.25	81-82	2.32	59	6.75	171	3.86	98
9.8	249	28	4.58	116	2.96	75	9.70	246	5.02	128
Series 900 Flush Grid Nub Top ¹										
2.1	53	6	0.75-0.90	19-23	1.22	31	2.19	56	1.35	34
3.1	79	9	1.30-1.39	33-35	1.52	39	3.17	81	1.85	47
3.5	89	10	1.47-1.56	37-40	1.64	42	3.51	89	2.02	51
4.1	104	12	1.82-1.90	46-48	1.75	44	4.19	106	2.35	60
5.1	130	15	2.34-2.40	59-61	1.95	50	5.19	132	2.86	73
5.8	147	17	2.69-2.74	68-70	2.09	53	5.87	149	3.20	81
6.1	155	18	2.86-2.91	73-74	2.12	54	6.21	158	3.37	86
6.8	173	20	3.21-3.25	82-83	2.25	57	6.89	175	3.70	94
9.8	249	28	4.58	116	2.92	74	9.61	244	5.06	129

 $^{^{\}rm 1}$ See ${\it Anti-Sag}$ ${\it Carryway}$ ${\it Wearstrip}$ ${\it Configuration}$ for alternate layouts for the "B" dimension.

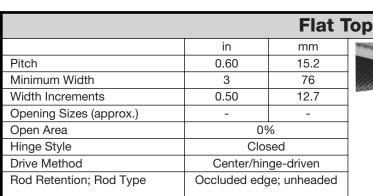
Sn	rocket De	scription	Α		E	3				E
	Diameter		Range (Bottor	m to Top)						-
in	mm	No. Teeth	in	mm	in	mm	in	mm	in	mm
		Ser	ies 900 Raised Rib, Fl		ı ısert Rolle	rs. Open (I Grid ¹			
2.1	53	6	0.75-0.90	19-23	1.25	32	2.28	58	1.73	44
3.1	79	9	1.30-1.39	33-35	1.51	38	3.20	81	1.97	50
3.5	89	10	1.47-1.56	37-40	1.70	43	3.60	91	2.23	57
4.1	104	12	1.82-1.90	46-48	1.74	44	4.25	108	2.73	69
5.1	130	15	2.34-2.40	60-61	2.00	51	5.20	132	2.99	76
5.8	147	17	2.69-2.74	68-70	2.13	54	6.00	152	3.40	86
6.1	155	18	2.86-2.91	73-74	2.20	56	6.20	157	3.52	89
6.8	173	20	3.21-3.25	81-82	2.32	59	6.75	171	4.08	104
9.8	249	28	4.58	116	2.96	75	9.70	246	5.24	133
				900 Open Flush					1	
2.1	53	6	0.75-0.90	19-23	1.25	32	2.28	58	1.51	38
3.1	79	9	1.30-1.39	33-35	1.51	38	3.20	81	1.75	44
3.5	89	10	1.47-1.56	37-40	1.70	43	3.60	91	2.01	51
4.1	104	12	1.82-1.90	46-48	1.74	44	4.25	108	2.51	64
5.1	130	15	2.34-2.40	60-61	2.00	51	5.20	132	2.77	70
5.8	147	17	2.69-2.74	68-70	2.13	54	5.80	147	3.15	80
6.1	155	18	2.86-2.91	73-74	2.20	56	6.20	155	3.30	84
6.8	173	20	3.21-3.25	81-83	2.32	59	6.75	171	3.86	98
9.8	249	28	4.58	116	2.96	75	9.70	246	5.02	128
	_		000 Diamond Friction							
2.1	53	6	0.75-0.90	19-23	1.25	32	2.28	58	1.76	45
3.1	79	9	1.30-1.39	33-35	1.51	38	3.20	81	1.96	50
3.5	89	10	1.47-1.56	37-40	1.70	43	3.60	91	2.22	56
4.1	104	12	1.82-1.90	46-48	1.74	44	4.25	108	2.72	69
5.1	130	15	2.34-2.40	60-61	2.00	51	5.20	132	2.98	76
5.8	147	17	2.69-2.74	68-70	2.13	54	6.00	152	3.40	86
6.1	155	18	2.86-2.91	73-74	2.20	56	6.20	157	3.51	89
6.8	173	20	3.21-3.25	81-82	2.32	59	6.75	171	4.08	104
9.82	249	28	4.58	116	2.96	75	9.70	246	5.23	133
			Series 900 Mold to \	Width 29 mm So	uare Frict	ion Top ¹			1	
2.1	53	6	0.75-0.90	19-23	1.27	32	2.38	60	1.54	39
3.1	79	9	1.30-1.39	33-35	1.58	40	3.36	85	2.04	52
3.5	89	10	1.47-1.56	37-40	1.70	43	3.70	94	2.21	56
4.1	104	12	1.82-1.90	46-48	1.88	48	4.38	111	2.54	65
5.1	130	15	2.34-2.40	59-61	2.10	53	5.38	137	3.05	77
5.8	147	17	2.69-2.74	68-70	2.32	59	6.06	154	3.39	86
6.1	155	18	2.83-2.88	72-73	2.31	59	6.34	161	3.52	89
6.8	173	20	3.21-3.25	82-83	2.42	61	7.08	180	3.89	99
9.8	249	28	4.58-4.61	116-117	2.92	74	9.80	249	5.25	133

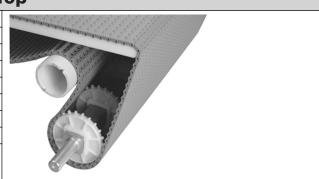

¹ See *Anti-Sag Carryway Wearstrip Configuration* for alternative layouts for the "B" dimension.
² The 9.8 in (249 mm) pitch diameter 28-tooth split sprocket must not be used with any Series 900 style acetal belt. A special 9.7 in (246 mm) pitch diameter split sprocket must be used instead.

Dead Plate Gap

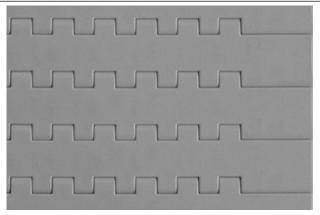
A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

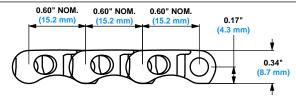
When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.


Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.

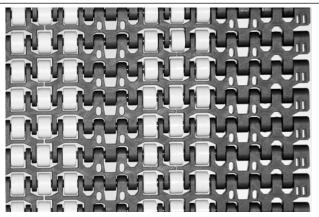


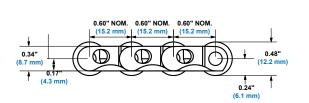
A Top surface of dead plate


B Dead plate gap


	Sprocket Description	Ga	Gap			
Pitch D	iameter	No. Teeth	in	mm		
in	mm	No. reeur	""	mm		
2.1	53	6	0.147	3.7		
3.1	79	9	0.095	2.4		
3.5	89	10	0.084	2.1		
4.1	104	12	0.071	1.8		
5.1	130	15	0.057	1.4		
5.8	147	17	0.050	1.3		
6.1	155	18	0.047	1.2		
6.8	173	20	0.042	1.1		
9.8	249	28	0.029	0.7		

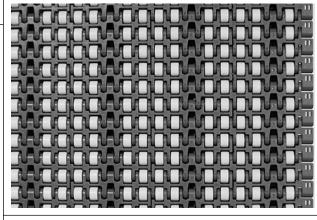
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Smooth, closed upper surface with fully flush edges.
- Closed edges on one side of the belt.
- Minimal back tension required.
- Underside design and small pitch allow the belt to run smoothly around nosebars.
- Lug tooth sprockets improve sprocket engagement and simplify installation.
- Small pitch reduces chordal action and transfer dead plate
- Can be used over 0.75 in (19.1 mm) diameter nosebars for tight transfers.

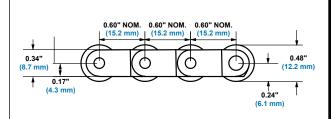



Belt Data											
Belt material	Standard rod material 0.18 in (4.6 mm)	Belt st	rength		ture range nuous)	Belt w	/eight				
	0.16 111 (4.6 111111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²				
Acetal	Polypropylene	1500	2232	34 to 200	1 to 93	1.55	7.57				
Polypropylene	Polypropylene	1000	1490	34 to 220	1 to 104	1.07	5.22				
Polyethylene	Polyethylene	600	893	-50 to 150	-46 to 66	1.11	5.42				
HR nylon	Nylon	1000	1490	-50 to 240	-46 to 116	1.31	6.43				

		Insert F	Roller
	in	mm	
Pitch	0.60	15.2	
Minimum Width	6	152	
Width Increments	3.00	76	
Open Area	12.5	5%	•
Hinge Style	Clos	sed	
Drive Method	Center/hin		
Rod Retention; Rod Type	Occluded edg		

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- · Has fully flush edges on one side and closed edges on opposite side.
- Rollers protrude above and below the belt surface.
- Roller density: 240 rollers/ft² (2580 rollers/m²).
- Minimal back tension required.
- For low back-pressure applications, place wearstrip between rollers. For activated roller applications, place wearstrip directly under rollers.
- Yellow acetal rollers are 0.3 in (7.6 mm) wide and 0.48 in (12.1 mm) diameter. Rollers are on the belt rod.
- Rollers are spaced in groups with 1.5 in (38.1 mm) between roller zones.
- Compatible with 0.75 in (19.1 mm) diameter notched nosebars for tight transfers. Contact Intralox Customer Service for more information.
- Belt can be supported using 1.38 in (35.1 mm) wide or narrower parallel wearstrips.
- Sprocket locations are indented 1.5 in (38.1 mm) from edge of belt.
- Sprocket locations are spaced 3.0 in (76.2 mm) apart.
- Roller indent from edge of belt to edge of roller is 2.25 in
- 6 in (152 mm) belt is molded to, width, with a 0.44 in (11.2 mm) roller indent.
- Belt widths above 6 in (152 mm) are bricklayed.

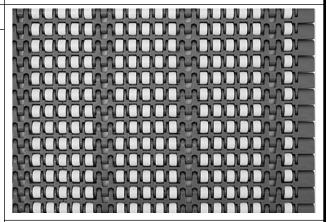

Belt Data									
Belt material	Standard rod material Ø 0.18 in (4.6 mm)	Belt st	rength		ure range nuous)	Belt w	/eight		
	0.10 111 (4.0 11111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²		
Acetal	Nylon	1000	1490	-50 to 200	-46 to 93	1.7	8.3		

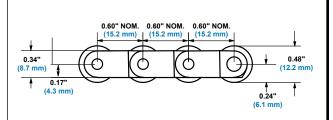


	High-D	ensity lı
	in	mm
Pitch	0.6	15.2
Minimum Width	9	229
Width Increments	3.00	76.2
Open Area	49	%
Hinge Style	Clos	sed
Drive Method	Center/hin	ge-driven
Rod Retention; Rod Type	Occlude unhe	J /

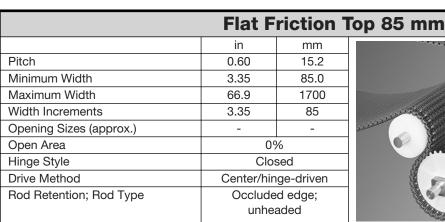
nsert Roller

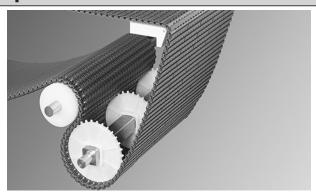
- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Fully flush edges on one side and closed edges on opposite side.
- Rollers protrude above and below the belt surfaces.
- Uses one unheaded rod across the entire belt width on each belt row.
- For activated roller applications, place wearstrip directly under rollers.
- Minimum back tension required.
- Yellow acetal rollers are 0.30 in (7.6 mm) wide and 0.48 in (12.1 mm) diameter. Rollers are on the belt rod.
- Roller density: 320 rollers/ft² (3440 rollers/m²).
- Roller indent: 0.70 in (17.8 mm) from edge of belt to edge of roller.
- Sprocket indent: 1.5 in (38.1 mm) from edge of belt.
- Sprocket spacing: 3.0 in (76.2 mm) apart.
- Compatible with 0.75 in (19.1 mm) diameter nosebars for tight transfers. For high-speed and load applications, a nose-roller is recommended.
- For low back-pressure applications, place wearstrip between rollers in parallel. Wearstrip of 0.50 in (13 mm) wide is recommended to allow some manufacturing and installation tolerance in the conveyor, while providing adequate support to the belt. Maximum allowed wearstrip width is 0.75 in (19 mm).

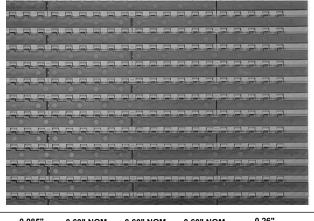


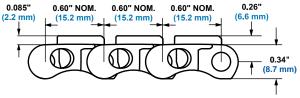


Belt Data									
Belt material	Standard rod material 0.180 in (4.6 mm)	Belt st	rength		ture range nuous)	Belt w	/eight		
	(4.6 11111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²		
Acetal	Nylon	1000	1490	-50 to 200	-46 to 93	1.87	9.13		

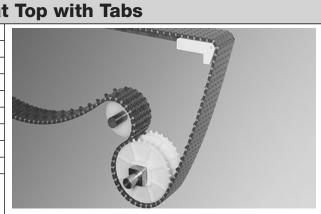

	Hiç	gh-Dens	ity Inse	rt Roller 85 mm
		in	mm	
Pitch		0.6	15.2	
Minimum Width		10	255	
Width Increments		3.35	85	
Open Area		3.6	%	
Hinge Style		Clos	sed	
Drive Method		Center/hin	ge-driven	
Rod Retention; Rod Type		Occlude unhea	•	

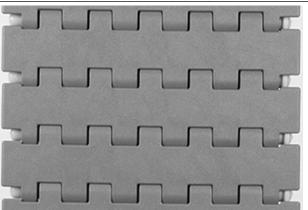

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Fully flush edges on one side and closed edges on opposite side.
- Rollers protrude above and below the belt surfaces.
- Uses one unheaded rod across the entire belt width on each belt row.
- · Minimum back tension required.
- For activated roller applications, place wearstrip directly under rollers.
- Yellow acetal rollers are 0.30 in (7.6 mm) wide and 0.48 in (12.1 mm) diameter. Rollers are on the belt rod.
- Roller density: 360 rollers/ft² (3875 rollers/m²).
- Roller indent: 0.89 in (22.6 mm) from edge of belt to edge of roller.
- Sprocket indent: 1.67 in (42.5 mm) from edge of belt.
- Sprocket spacing: 3.35 in (85 mm) apart.
- Compatible with 0.75 in (19.1 mm) diameter nosebars for tight transfers. For high-speed and load applications, a nose-roller is recommended.
- For low back-pressure applications, place wearstrip between rollers in parallel. Wearstrip of 0.50 in (13 mm) wide is recommended to allow some manufacturing and installation tolerance in the conveyor, while providing adequate support to the belt. Maximum allowed wearstrip width is 0.75 in (19 mm).

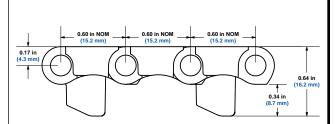



Belt Data									
Belt material	Standard rod material Ø 0.18 in (4.6 mm)	Belt st	rength		ure range nuous)	Belt w	Belt weight		
	0.10 111 (4.0 11111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²		
Acetal	Nylon	1000	1490	-50 to 200	-46 to 93	1.95	9.52		

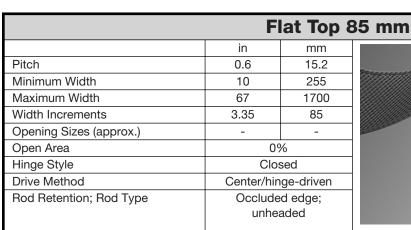
- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Smooth, closed upper surface with fully flush edges.
- Closed edges on one side of the belt.
- Small pitch reduces chordal action, reducing the gap at transfer dead plate.
- Sprocket lug tooth improves drive performance and enhances sprocket life.
- Minimal back-tension required to maintain sprocket engagement.
- Underside design combined with small pitch allows the belt to run smoothly around a 0.75 in (19 mm) nosebar. Use a dynamic nose-roller for package handling applications.

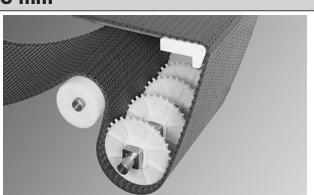


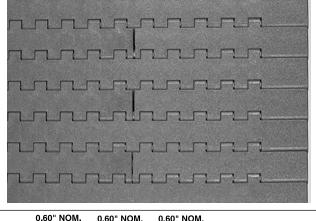

	Belt Data											
Base belt material	Base/friction	Standard rod material Ø 0.18	Belt st	rength	Temperati (contin	0	Belt v	weight	Friction Top	Age Accep	,	
	color	in (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	Hardness	FDA (USA)	EU MC ^b	
Acetal	Gray/Black	Nylon	1500	2230	-10 to 130	-23 to 54	1.80	8.79	54 Shore A	•		
a Fulling a second:		•										

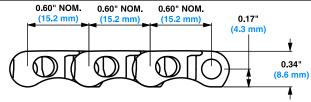

- · Fully compliant
- a FDA Compliant with Restriction: Do not use in direct contact with fatty foods.
- b European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.
- c This elastomer is not subject to the testing of this directive.

N	Nold to W	idth Fla
	in	mm
Pitch	0.60	15.2
	3.25	83
Molded Widths	3.35	85
	4.50	114
Opening Sizes (approx.)	-	-
Open Area	0	%
Hinge Style	Clo	sed
Drive Method	Center/hir	nge-driven
Rod Retention; Rod Type		n feature; ded

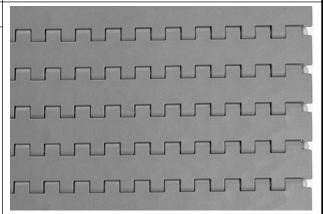


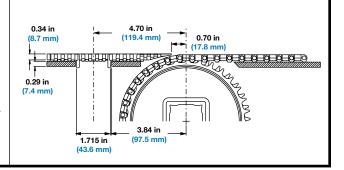

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Smooth, closed upper surface with fully flush edges.
- Tracking tabs provide lateral tracking.
- Minimal back tension required.
- Lug tooth sprockets improve sprocket engagement and make installation easier.
- Available in 10 ft (3 m) increments.
- Can be used over 0.75 in (19.1 mm) diameter nosebars for tight transfers.
- 3.25 in (83 mm) tabbed belts use one sprocket.
- 4.50 in (114 mm) and 3.35 in (85 mm) tabbed belts use up to three sprockets.
- Width tolerances for Series 1000 MTW belts: +0.000/-0.020 in (+0.00/-0.50 mm).
- 3.35 in (85 mm) molded tracking tabs fit into standard
 1.65625 in (42.1 mm) wearstrip tracks, ensuring proper belt alignment.
- 3.25 in (83 mm) and 4.50 in (114 mm) molded tracking tabs fit into standard 1.75 in (44.5 mm) wearstrip tracks, ensuring proper belt alignment.



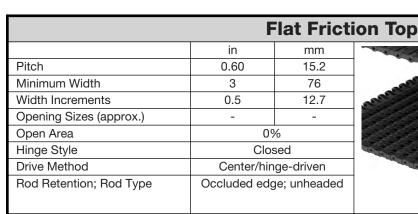

	Belt Data										
Belt Width Belt		Belt Material	Standard Rod Material Ø 0.18 in (4.6 mm)			Temperature Range (continuous)		Belt Weight			
in	mm		9 0.18 111 (4.0 11111)	lb	kg	°F	°C	lb/ft	kg/m		
3.25	83	Acetal	Nylon	406	600	-50 to 200	-46 to 93	0.44	0.65		
3.35	85	Acetal	Nylon	419	620	-50 to 200	-46 to 93	0.44	0.65		
4.50	114	Acetal	Nylon	563	840	-50 to 200	-46 to 93	0.60	0.89		

- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Smooth, closed upper surface with fully flush edges.
- Closed edges used on one side of the belt.
- Small pitch reduces chordal action, reducing the gap at transfer dead plate.
- Sprockets have lug tooth, which improves drive performance and enhances sprocket life.
- Minimal back tension required to maintain sprocket engagement.
- Underside design, combined with small pitch, allows the belt to run smoothly around a 0.75 in (19 mm) nosebar. A dynamic nose-roller is highly recommended for package handling applications.

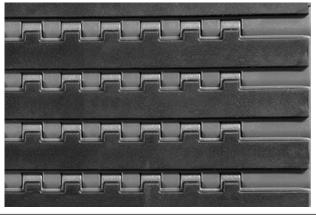


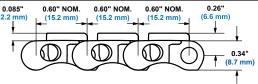

Belt Data										
Belt material Standard rod ma		Belt strength		Temperat (contir	ure range nuous)	Belt weight				
0.18 111 (4.01	0.18 111 (4.8 111111)		kg/m	°F	°C	lb/ft²	kg/m²			
Acetal Polypropylene		1500	2230	34 to 200	1 to 93	1.55	7.57			

Flat To	p ONEP	IECE™	Live Transfer 6.3 in
	in	mm	
Pitch	.60	15.2	0000
Molded Width	6.3	160	
Width Increments	-	-	
Open Area	09	%	
Hinge Style	Clos	sed	
Drive Method	Center/hin	ige-driven	
Rod Retention; Rod Type	Snap-lock	k; headed	



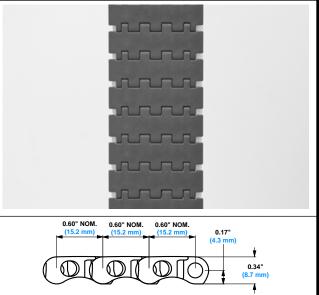
- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Smooth, closed upper surface with fully flush edges.
- Transfer edge is an integral part of this belt.
- Designed for smooth, self-clearing, right-angle transfers onto takeaway belts.
- Uses three sprockets.
- Lug tooth sprockets improve sprocket engagement and simplify installation.
- For information regarding sprocket placement, see the center sprocket offset table in Retainer Rings/Center Sprocket Offset.
- Minimal back tension required.
- Addition of a fixed frame support can be necessary. The support ensures that the transfer belt does not snag when it intersects with the takeaway belt. Add support below the transfer belt, before the transfer. See Series 900, Series 1100, and Series 1400 ONEPIECE Live Transfer Belts for more information.
- Cannot be used over 0.75 in (19.1 mm) diameter nosebars for tight transfers.
- Molded tracking tabs fit into standard 1.75 in (44.5 mm) wearstrip tracks to ensure proper belt alignment.
- Use sprockets with a pitch diameter of 1.50 in (38.1 mm) or
- Available in 10 ft (3 m) increments.




Belt Data										
Belt material	Standard rod material 0.18 in (4.6 mm)	Belt st	rength	Temperat (contir	ure range nuous)	Belt weight				
	0.16 (11 (4.6 (11(11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²			
Acetal	Nylon	500	744	-50 to 200	-46 to 93	0.78	3.81			

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Available in gray acetal with black rubber.
- Smooth, closed upper surface with fully flush edges.
- Friction Top extends to the edge of the belt (no indent).
- Closed edges on one side of the belt.
- Lug tooth sprockets improve sprocket engagement and simplify installation.
- Underside design and small pitch combine to allow the belt to run smoothly around nosebars.
- Small pitch reduces chordal action and transfer dead plate
- Can be used over 0.75 in (19.1 mm) diameter nosebars for tight transfers.

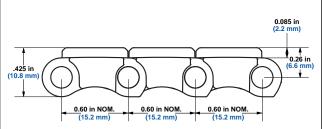
	Belt Data														
Base belt material	Base/friction color	Standard rod	Belt strength		Temperature range (continuous)		Belt weight		Friction Top	Age accep	ncy tability				
		material Ø 0.18 in (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	Hardness	FDA (USA)	EU MC ^b				
Acetal	Gray/black	Nylon	1500	2232	-10 to 130	-23 to 54	1.80	8.79	54 Shore A	•					
Acetal	White/white	Nylon	1500	2232	-10 to 130	-23 to 54	1.80	8.79	54 Shore A	•					


- Fully compliant
- a FDA Compliant with Restriction: Do not use in direct contact with fatty foods.
- b European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.
- c This elastomer is not subject to the testing of this directive.

	Mole	d to Widt
	in	mm
Pitch	0.6	15.2
	1.1	29
Molded Widths	1.5	37
Wolded Widths	1.8	46
	2.2	55
Opening Size (approximate)	-	-
Open Area	09	%
Hinge Style	Clos	sed
Drive Method	Center/hin	ge-driven
Rod Retention; Rod Type	Snap-lock	r; headed

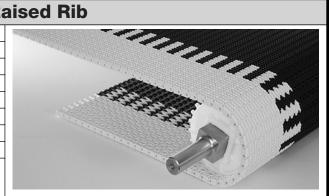
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Smooth, closed upper surface with fully flush edges.
- Underside design and small pitch allow the belt to run smoothly around nosebars.
- Minimal back tension required.
- Lug tooth sprockets improve sprocket engagement and simplify installation.
- Available in 10 ft (3 m) increments.
- Can be used over 0.75 in (19.1 mm) diameter nosebars for tight transfers.
- 29 mm and 37 mm belts use one sprocket.
- 46 mm and 55 mm belts can use up to two sprockets.

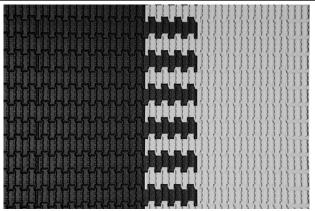
	Belt Data											
Belt '	Width	Belt Material	Standard Rod Material Ø 0.18 in (4.6 mm)		trength	Temperati (contir	Belt Weight					
in	mm		0.16 (11 (4.6 11111)	lb	kg	°F	°C	lb/ft	kg/m			
1.1	29	Acetal	Nylon	140	64	-50 to 200	-46 to 93	0.15	0.22			
1.5	37	Acetal	Nylon	200	91	-50 to 200	-46 to 93	0.19	0.28			
1.8	46	Acetal	Nylon	230	104	-50 to 200	-46 to 93	0.23	0.35			
2.2	55	Acetal	Nylon	201¹	91 ^a	-50 to 200	-46 to 93	0.28	0.42			

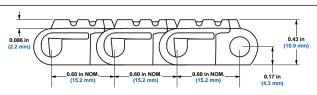


	Mold to	Width I	Flat Friction Top
	in	mm	
Pitch	0.60	15.2	The state of the s
Molded Widths	1.1	29	1000
Worded Widths	2.2	55	1000
Hinge Style	Clo	sed	
Drive Method	Center/hir	nge-driven	-0880-
Rod Retention; Rod Type	Snap-locl	k; headed	

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Smooth, closed upper surface with fully flush edges.
- Friction top extends to the end of the belt, with no indent.
- Underside design and small pitch allow the belt to run smoothly around nosebars.
- Available in grey acetal with black rubber.
- · Minimal back tension required.
- Lug tooth sprockets improve sprocket engagement and simplify installation.
- Available in 10 ft (3 m) increments.
- Can be used over 0.75 in (19.1 mm) diameter nosebars for tight transfers.
- 29-mm belts use one sprocket.
- 55-mm belts can use up to two sprockets.

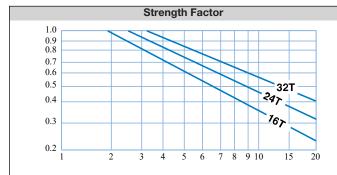



	Belt Data													
Belt '	Width	Belt Material	Base/ Friction Color	Standard Rod Material Ø 0.18 in (4.6 mm)	Belt Strength		Temperature elt Strength Range (continuous)		Belt Weight		Friction Top Hardness	Age Acceptibilit 2=Blue, 3 4=G	y:1=White, =Natural,	
in	mm			(4.6 11111)	lb	kg	°F	°C	lb/ft	kg/m		FDA (USA)	EU MC	
1.1	29.0	Acetal	Gray/ black	Nylon	140	64	34 to 130	1 to 54	0.17	0.25	54 Shore A	•		
2.2	55.0	Acetal	Gray/ black	Nylon	200¹	91 ^a	34 to 130	1 to 54	0.34	0.48	54 Shore A	•		

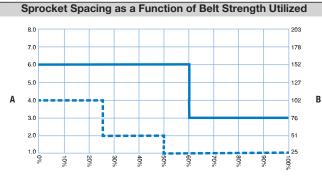

- - Fully compliant
- a FDA Compliant with Restriction: Do not use in direct contact with fatty foods.
- b European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.
- c This elastomer is not subject to the testing of this directive.

	No	n Skid R			
	in	mm			
Pitch	0.60	15.2			
Minimum Width	3.0	76.0			
Width Increments	0.5	12.7			
Opening Sizes (approx.)	-	-			
Open Area	09	%			
Hinge Style	Clos	sed			
Drive Method	Center/hinge-driven				
Rod Retention; Rod Type	Occluded edg	ge; unheaded			

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Two edge options available: no indent and 21 mm indent.
- Closed edges on one side of the belt.
- Minimal back tension required.
- Non Skid Raised Rib surface increases traction.
- Small pitch reduces chordal action and transfer dead plate gap.
- Low profile conveyor reduces the installation costs associated with digging pits.
- Lug tooth sprockets improve sprocket engagement and simplify installation.
- Finger transfer plates ensure safe transfers, eliminating the need for safety stops and reducing downtime.



Belt Data											
Belt material	Standard rod material Ø 0.18 in (4.6 mm)	Belt st	rength		ure range nuous)	Belt weight					
	0.18 111 (4.8 11111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²				
Acetal	Nylon	2000	2976	-50 to 200	-46 to 93	1.86	9.08				
HSEC acetal	Nylon	1800	2679	-50 to 200	-46 to 93	1.88	9.18				
FR Anti Static	Nylon	700	1042	-50 to 150	-46 to 66	1.64	8.01				


		<u> </u>	nd Support Quantity Refere	nce
Belt Wic	th Range ¹	Minimum Number of	W	earstrips
in	mm	Sprockets Per Shaft ²	Carryway	Returnway ³
3	76	2	2	2
4	102	2	2	2
6	152	2	2	2
7	178	2	3	2
8	203	2	3	2
10	254	2	3	2
12	305	3	3	2
14	356	3	4	3
15	381	3	4	3
18	457	3	4	3
24	610	5	5	3
30	762	5	6	4
36	914	7	7	4
42	1067	7	8	5
48	1219	9	9	5
54	1372	9	10	6
60	1524	11	11	6
72	1829	13	13	7
84	2134	15	15	8
96	2438	17	17	9
120	3048	21	21	11
144	3658	25	25	13
or other w	idths, use an	odd number of sprockets at	Maximum 6 in (152 mm) centerline	Maximum 12 in (305 mm) centerline
maxim	um 6 in (152 n	nm) centerline spacing.4	spacing	spacing

Speed/length ratio (V/L)

Divide belt speed (V) by the shaft centerline distance (L). Strength Factor is found at intersection of the speed/length ratio and the appropriate sprocket line. See Belt Selection Instructions for more information.

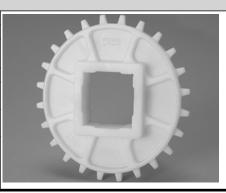
V = ft/min (m/min); T = number of teeth; L = ft (m)

SERIES 1000

Percentage of allowable belt strength utilized

- Sprocket spacing, in
- Sprocket spacing, mm

Dashed line 16T sprocket Solid line all other sprockets.


¹ Belts are available in 0.5 in (12.7 mm) increments beginning with 3 in (76 mm). If the actual width is critical, contact Intralox Customer Service.

² This number is a minimum. Heavy-load applications can require additional sprockets.

 $^{^{\}mbox{\tiny 3}}$ For Friction Top applications, use caution and contact Intralox Customer Service.

⁴ Lock down the center sprocket. With only two sprockets, fix the sprocket on the drive journal side only.

							Molde	d Spro	cket¹	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable B	ore Size	s
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	U.S.		tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in ²	in	mm ²	mm
16	3.1 ³	79 ³	3.2	81	0.5	13		1.5		40
(1.92%)					1.0	25	1.0,			
							1.25			
24	4.6	117	4.8	121	1.0	25		1.5,	30	40, 60
(0.86%)								2.5		
32	6.1	155	6.5	164	1.0	25		1.5		40
(0.48%)										

						Ac	etal Sp	olit Spr	ocket	S ⁴
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A ¹	vailable B	ore Size	S
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in ⁵	in	mm ⁵	mm
24 (0.86%)	4.6	117	4.8	121	1.5	38	1.25			
32 (0.48%)	6.1	155	6.5	164	1.5	38			30 40	

	HR Nylon Sprockets ^{6, 7}												
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable b	ore Size	S			
teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric			
(chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square			
action)	in	mm	in	mm	in	mm	in	in	mm	mm			
16 (1.92%)	3.1	79	3.2	81	1.0	25	1.98						

¹ Contact Intralox Customer Service for lead times.

 $^{^2}$ U.S. key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

³ When using 3.1 in (79 mm) pitch diameter sprockets, the belt strength for belts rated over 1200 lb/ft (1786 kg/m) is de-rated to 1200 lb/ft (1786 kg/m). All other belts maintain the published rating.

⁴ Contact Intralox Customer Service for lead times.

⁵ U.S. key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

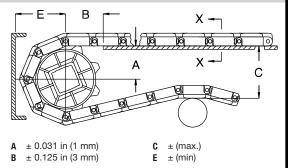
Contact Intralox Customer Service for lead times.
 Cannot be used with S1000 High-Density Insert Roller

^{8 1/4&}quot; keyway

	HR Nylon Split Sprockets									
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	P	vailable E	Bore Size	S
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in	in	mm	mm
30 (0.54%)	5.8	147	5.9	150	1.48	38	1-7/16			

					G	lass Fi	illed Ny	lon Sp	lit Spr	ockets		
No. of	of Nom. Nom. Nom. Nom. Nom. Available Bore Sizes											
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	U.S. Metric				
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square		
Action)	in	mm	in	mm	in	mm	in	in	mm	mm		
24	4.6	117	4.8	121	1.5	38	1	1.5		40		
(0.86%)							1.25					
							1.5					
32	6.1	155	6.5	164	1.5	38	1	1.5	30	40		
(0.48%)							1.25		40			
							1.5					

	Polypropylene Composite Split Sprockets ²										
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	Bore Size	es	
teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	etric	
(chordal	Dia. in	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	
action)		mm	in	mm	in	mm	in	in	mm	mm	
24	4.6	117	4.8	121	1.5	38		1.5		40	
(0.86%)											
32	6.1	155	6.5	164	1.5	38		1.5		40	
(0.48%)											

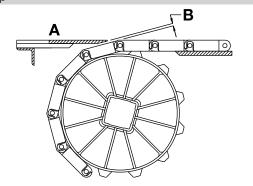

¹ Contact Intralox Customer Service for lead times. ² Contact Intralox Customer Service for lead times.

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see Basic Conveyor Frame Requirements.

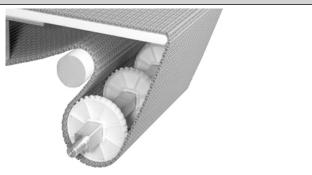

Sp	rocket Des	scription	Α		E	3	(C		Ε
Pitch D	iameter	No. Teeth	Range (Botton	n to Top)	in	mm	in	mm	in	mm
in	mm	No. reem	in	mm	""	111111	""	111111	""	111111
		Se	eries 1000 Flat Top, Fl	at Top 85 mm, I	Mold to W	idth Flat T	ор	•		
3.1	79	16	1.34-1.37	34-35	1.59	40	3.08	78	1.77	45
4.6	117	24	2.11-2.13	54	1.99	50	4.60	117	2.53	64
6.1	155	32	2.88-2.89	73	2.43	62	6.12	155	3.29	84
		•	Series 1000 High D	ensity Insert Re	oller, Inser	t Roller			-	
3.1	79	16	1.33	34	1.60	41	3.13	80	1.84	47
4.6	117	24	2.10	53	2.02	51	4.65	118	2.60	66
6.1	155	32	2.87	73	2.46	62	6.18	157	3.36	85
			Series 1000 Flat Frid	tion Top, Flat F	riction To	p 85 mm				
3.1	79	16	1.35	34	1.59	40	3.17	81	1.86	47
4.6	117	24	2.12	54	2.01	51	4.70	119	2.62	67
6.1	155	32	2.88	73	2.44	62	6.22	158	3.39	86

Dead Plate Gap

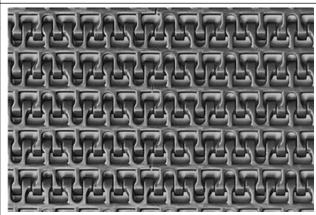
A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

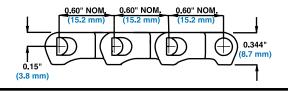
When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.


A Top surface of dead plate

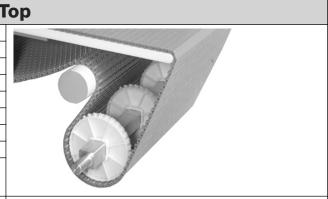
B Dead plate gap

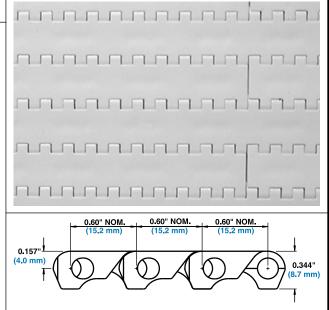

	Sprocket Description		Gap				
Pitch	Diameter	No. Teeth	in	mm			
in	mm	No. Teetii	ll'				
3.1	79	16	0.029	0.7			
4.6	117	24	0.020	0.5			
6.1	155	32	0.015	0.4			



		Flush	Grid
	in	mm	
Pitch	0.60	15.2	
Minimum Width	See Produ	uot Notos	
Width Increments	See Frodi	act Notes	Note the least
Min Opening Size (approx.)	0.17×0.10	4.3 × 2.5	
Max. Opening Size (approx.)	0.31×0.10	7.9 × 2.5	
Open Area	28	%	
Hinge Style	Ор	en	
Drive Method	Hinge-	driven	
Rod Retention; Rod Type	Occluded edg	ge; unheaded	

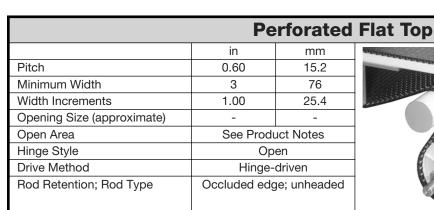
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- · Lightweight with smooth surface grid.
- Small pitch reduces chordal action and transfer dead plate
- For information regarding sprocket placement, see the center sprocket offset chart in Locked Sprocket Position on Shaft.
- Custom-built in widths that vary by material. Acetal and polypropylene are built in widths from 3 in (76 mm) and up, in 0.5 in (12.7 mm) increments. Flame retardant thermoplastic polyester (FR TPES) is built in widths from 5 in (127 mm) and up, in 1.0 in (25.4 mm) increments. All other materials are built in widths 3 in (76 mm) and up, in 1.0 in (25.4 mm) increments.
- Can be used over 0.875 in (22.2 mm) diameter nosebar for tight transfers.

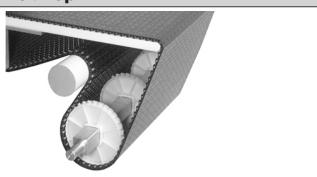



		Belt Data					
Belt material	Standard rod material Ø 0.18 in (4.6 mm)	Belt st	rength		ture range nuous)	Belt v	veight
	0.18 1 (4.8 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.81	3.95
Polyethylene	Polyethylene	450	670	-50 to 150	-46 to 66	0.87	4.25
Acetal	Polypropylene	1300	1940	34 to 200	1 to 93	1.19	5.80
HSEC acetal	Polypropylene	800	1190	34 to 200	1 to 93	1.19	5.80
FR TPES	Polypropylene	750	1120	40 to 150	4 to 66	1.30	6.34
HHR nylon	HHR nylon	1100	1640	-50 to 310	-46 to 154	1.14	5.57
HR nylon	Nylon	1100	1640	-50 to 240	-46 to 116	1.07	5.22
UV resistant polypropylene	UV resistant	700	1040	34 to 220	1 to 104	0.81	3.98
	polypropylene						
Detectable polypropylene A22	Polypropylene	450	670	34 to 150	1 to 66	1.04	5.08
Acetal ¹	Polyethylene	1200	1790	-50 to 70	-46 to 21	1.19	5.80
UVFR	UVFR	700	1042	-34 to 200	1 to 93	1.57	7.67

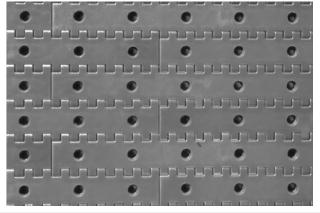
¹ Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.

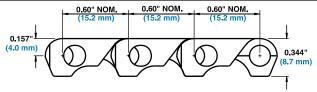
		Flat 1
	in	mm
Pitch	0.60	15.2
Minimum Width	3	76
Width Increments	1.00	25.4
Opening Size (approximate)	-	-
Open Area	09	%
Hinge Style	Ор	en
Drive Method	Hinge-	driven
Rod Retention; Rod Type	Occluded edg	ge; unheaded


- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a helt
- Small pitch reduces chordal action and transfer dead plate gap.
- · Lightweight with smooth, closed surface grid.
- For information regarding sprocket placement, see the center sprocket offset chart in Locked Sprocket Position on Shaft.
- Can be used over 0.875 in (22.2 mm) diameter nosebar for tight transfers. See Tight Transfer Methods for more information.

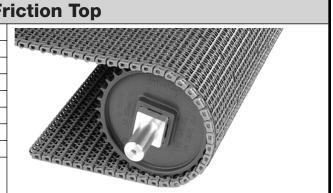


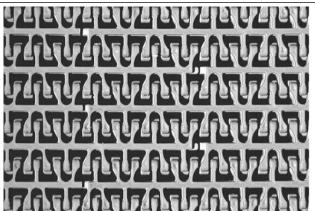
	В	elt Data					
Belt material	Standard rod material Ø 0.18 in (4.6 mm)	Belt st	rength		ure range nuous)	Belt weight	
	111 (4.0 11111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
Polypropylene	Polypropylene	500 ¹	744 ¹	34 to 220	1 to 104	0.90	4.40
Polyethylene	Polyethylene	300 ¹	450 ¹	-50 to 150	-46 to 66	0.96	4.69
HR nylon	Nylon	500	744	-50 to 240	-46 to 116	1.15	5.61
Acetal	Polypropylene	1000	1490	34 to 200	1 to 93	1.30	6.35
Acetal ²	Polyethylene	900	1340	-50 to 70	-46 to 21	1.30	6.35
X-Ray Detectable Acetal	X-Ray Detectable Acetal	800	1191	-50 to 200	-46 to 93	1.6	7.81
Detectable polypropylene A22	Polypropylene	300	446	34 to 150	1 to 66	1.09	5.32

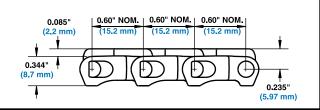

 $^{^{1}}$ When using steel split sprockets, the belt strength for polypropylene is 400 lb/ft (595 kg/m): polyethylene is 240 lb/ft (360 kg/m)


² Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.

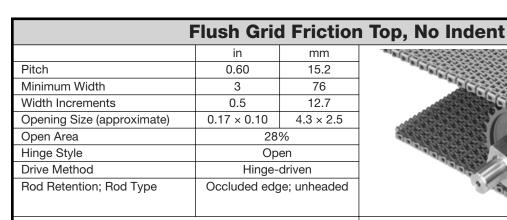
- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- 5.3% open area includes 2.1% open area at the hinge.
- Underside design and small pitch allow the belt to run smoothly around nosebars.
- For information regarding sprocket placement, see the center sprocket offset chart in Locked Sprocket Position on Shaft.
- For use on vacuum applications requiring tight, end-toend transfers.
- Available with 5/32 in (4 mm) round perforations on a nominal 1 in (25.4 mm) × 0.6 in (15.2 mm) perforation
- Can be used over 0.875 in (22.2 mm) diameter nosebar for tight transfers. See Tight Transfer Methods for more information.

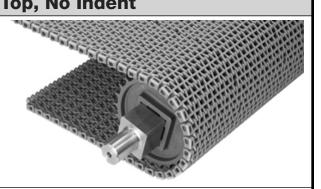



Belt Data											
Belt Material	Standard Rod Material Ø 0.18 in (4.6 mm)	Belt St	rength		ure Range nuous)	Belt Weight					
	0.16 (4.6 (1)(1)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²				
Acetal	Polypropylene	1000	1490	34 to 200	1 to 93	1.30	6.35				
Acetal ¹	Polyethylene	900	1340	-50 to 70	-46 to 21	1.30	6.35				

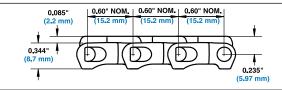


	Flus	h Grid F
	in	mm
Pitch	0.60	15.2
Minimum Width	3	76
Width Increments	0.5	12.7
Opening Size (approximate)	0.17 × 0.10	4.3 × 2.5
Open Area	28	%
Hinge Style	Ор	en
Drive Method	Hinge-	driven
Rod Retention; Rod Type	Occluded edg	ge; unheaded


- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Available in gray polypropylene with gray rubber, blue polypropylene with blue rubber, gray polypropylene with black rubber, and white polypropylene with white rubber.
- Temperature, environmental conditions, and product characteristics affect the effective maximum degree of incline. Take these items into consideration when designing conveyor systems utilizing these belts.
- If a center-drive setup is used, it can be necessary to retain the belt laterally, by placing collars at the backbend roller, before the drive. Abrasion Resistant rods are recommended.
- For information regarding sprocket placement, see the center sprocket offset chart in Locked Sprocket Position on Shaft.
- Can be used over 0.875 in (22.2 mm) diameter nosebar for tight transfers.
- Belts have a 0.34 in (8.6 mm) molded indent.



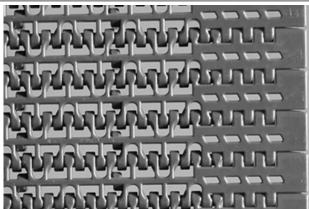
					Belt Data						
Base belt	Base/Friction	Standard rod material Ø	Relt strength			Temperature range (continuous)		veight	Friction Top	Age Accep	ency tability
material	Color	0.18 in (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	Hardness	FDA (USA)	EU MC ^b
Polypropylene	Gray/Gray	Polypropylene	700	1040	34 to 150	1 to 66	1.18	5.76	64 Shore A		
Polypropylene	Gray/Black	Polypropylene	700	1040	34 to 150	1 to 66	1.18	5.76	55 Shore A	а	
Polypropylene	White/White	Polypropylene	700	1040	34 to 150	1 to 66	1.18	5.76	55 Shore A	а	С
Polypropylene	High- Performance FT Blue/Blue	Polypropylene	700	1040	34 to 212	1 to 100	1.18	5.76	59 Shore A	а	С
Polypropylene	Blue/Blue	Polypropylene	700	1040	34 to 150	1 to 66	1.18	5.76		а	С

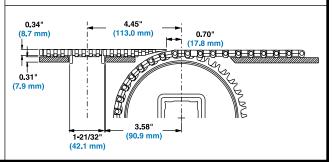

- Fully compliant
- a FDA Compliant with Restriction: Do not use in direct contact with fatty foods.
- b European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.
- c EU compliant with Restriction: Do not use in direct contact with fatty foods.

- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Available in blue PP with blue rubber.
- For information regarding sprocket placement, see the center sprocket offset chart in Locked Sprocket Position
- If a center-drive setup is used, it can be necessary to place collars to retain the belt laterally at the backbend roller before the drive. Abrasion Resistant rods are recommended.
- Temperature, environmental conditions, and product characteristics affect the effective maximum degree of incline. Take these items into consideration when designing conveyor systems utilizing these belts.
- Can be used over 0.875 in (22.2 mm) diameter nosebar for tight transfers.

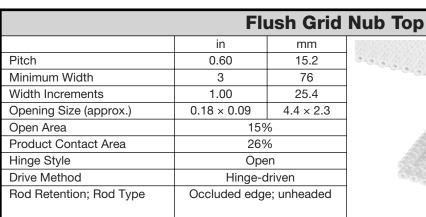
Intrateciate de la production de la constant de l **մդեղերարերերերերերերերերերերերերերերերեր** ջանականությունուրությունությունուրությունուրությունուրությունուրությունուրությունուրությունուրություն

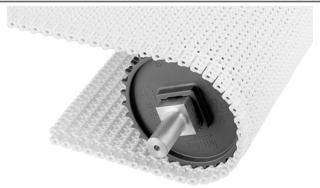
	Belt Data										
Base belt	Base/friction	Standard rod material Ø	Belt st	rength	•	ure range nuous)	Belt v	veight	Friction Top	Age accept	•
material	color	0.18 in (4.6 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	Hardness	FDA (USA)	EU MC ^b
Polypropylene	Blue/Blue	Polypropylene	700	1040	34 to 150	1 to 66	1.07	5.22	55 Shore A	а	С
Polypropylene	High- Performance FT Blue/Blue	Polypropylene	700	1040	34 to 212	1 to 100	1.18	5.76	59 Shore A	а	С

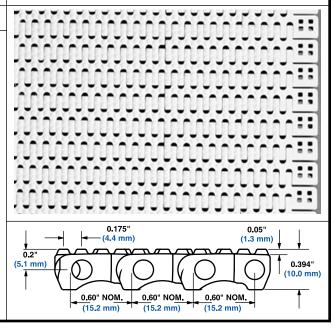

- Fully compliant
- a FDA Compliant with Restriction: Do not use in direct contact with fatty foods.
- b European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.
- c EU compliant with Restriction: Do not use in direct contact with fatty foods.



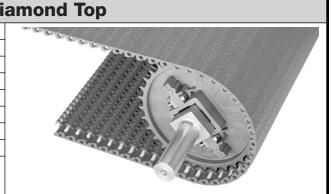
OI	NEPIECE ^T	[™] Live T	ransfer Flush Grid
	in	mm	
Pitch	0.60	15.2	
Minimum Width	6	152	# 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Width Increments	1.00	25.4	
Min Opening Size (approx.)	0.17 × 0.10	4.3 × 2.5	
Max. Opening Size (approx.)	0.31 × 0.10	7.9 × 2.5	
Open Area	28	%	
Hinge Style	Ор	en	
Drive Method	Hinge-	driven	and and
Rod Retention; Rod Type	Snap-lock	; headed	



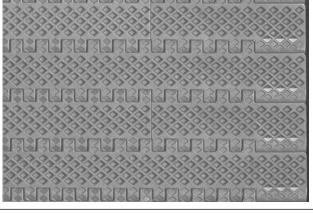

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a helt
- Lightweight with smooth surface grid.
- Built with nylon rods for superior wear resistance.
- Transfer edge is an integral part of this belt.
- Recommended for use with EZ Track sprockets.
- Small pitch reduces chordal action, resulting in a smoother product transfer.
- Designed for smooth, self-clearing, right angle transfers onto takeaway belts.
- Addition of a fixed frame support can be necessary. The support ensures that the transfer belt does not snag when it intersects with the takeaway belt. Add support below the transfer belt, before the transfer. See Series 900, Series 1100, and Series 1400 ONEPIECE Live Transfer Belts.
- For custom belt widths, contact Intralox Customer Service.
- Also available in 6 in (152 mm) Mold to Width.
- Molded tracking tabs fit into standard 1.75 in (44.5 mm) wearstrip tracks ensuring proper belt alignment.
- Use sprockets with a pitch diameter of 3.5 in (89 mm) or larger.

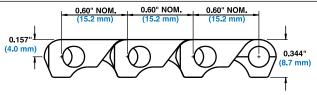


	Belt Data							
Belt material	Standard rod material Ø 0.18 in (4.6 mm)			Temperature range (continuous)		Belt weight		
	0.18 111 (4.0 11111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	
Acetal	Nylon	1300	1940	34 to 200	1 to 93	1.19	5.80	
FR TPES	Nylon	750	1120	40 to 150	4 to 66	1.30	6.34	
HHR nylon	HHR nylon	1100	1640	-50 to 310	-46 to 154	1.20	5.80	

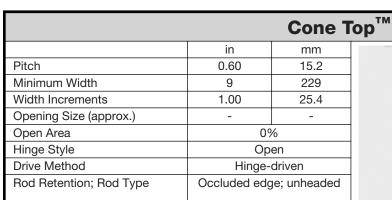


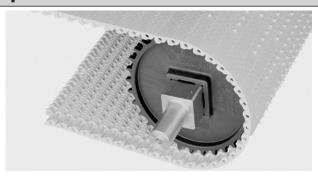
- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- · Available in acetal, polypropylene, and polyethylene (for frozen products).
- Recommended for products large enough to span the distance between the nubs.
- Nub pattern reduces contact between belt surface and product.
- Flush Grid Nub Top flights are available.
- Standard nub indent: 1.0 in (25.4 mm).




	Belt Data							
Belt material	Standard rod material Ø 0.18 in (4.6 mm)	Belt sti	ength1		ture range nuous)	Belt w	reight reight	
	0.18 111 (4.8 11111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.93	4.55	
Acetal	Polypropylene	1300	1940	34 to 220	7 to 93	1.36	6.65	
Polyethylene	Polyethylene	450	670	-50 to 150	-46 to 66	1.00	4.90	
Acetal	Polyethylene	1200	1790	-50 to 70	-46 to 21	1.36	6.65	

	Emb	edded Di	
	in	mm	
Pitch	0.60	15.2	
Minimum Width	3	76	
Width Increments	1.00	25.4	
Opening Size (approx.)	-	-	
Open Area	09	%	
Hinge Style	Ор	en	
Drive Method	Hinge-driven		
Rod Retention; Rod Type	Occluded edg	ge; unheaded	

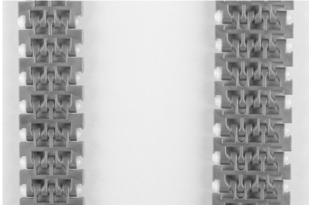



- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Lightweight with smooth, closed surface grid.
- Small pitch reduces chordal action and transfer dead plate gap.
- For information regarding sprocket placement, see the center sprocket offset chart in *Locked Sprocket Position on Shaft*.
- Can be used over 0.875 in (22.2 mm) diameter nosebar for tight transfers.



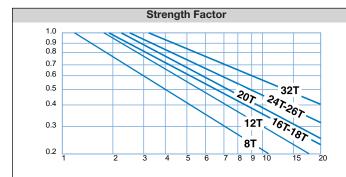
		Belt Data					
Belt Material	Standard Rod Material Ø 0.18 in (4.6 mm)	Belt St	rength1	Temperati (contir	ure Range nuous)	Belt W	/eight
	0.16 (4.6 (1))	lb/ft	kg/m	°F	Ô	lb/ft²	kg/m²
Polyethylene	Polyethylene	300	450	-50 to 150	-46 to 66	0.96	4.69

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Small pitch reduces chordal action and transfer dead plate
- Can be used over 0.875 in (22.2 mm) diameter nosebar for tight transfers.
- For information regarding sprocket placement, see the center sprocket offset chart in Locked Sprocket Position on Shaft.
- Minimum nominal alternating edge indents: 2 in (51 mm) and 3 in (76 mm).


	Belt Data							
Belt material	Standard rod material Ø 0.18 in (4.6 mm)	Belt strength		Temperature range (continuous)		Belt weight		
	0.16 111 (4.6 11111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	
Acetal	Polypropylene	1000	1490	34 to 200	1 to 93	1.31	6.40	
HR nylon	Nylon	500	744	-50 to 240	-46 to 116	1.18	5.76	

Flush Gri	id Mold to	Width, 3	
	in	mm	
Pitch	0.60	15.2	
Molded Widths	1.5 & 1.8	38 & 46	
Min Opening Size (approx.)	0.17 × 0.10	4.3 × 2.5	
Max. Opening Size (approx.)	0.31 × 0.10	7.9 × 2.5	
Open Area	26	%	
Hinge Style	Ор	en	
Drive Method	Hinge-driven		
Rod Retention; Rod Type	Snap-lock	r; headed	

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Lightweight with smooth surface grid.
- Flush edges.
- Tracking tabs provide lateral tracking.
- Standard nylon rodlets provide longer service life.
- Use only EZ Track sprockets.
- One (1) sprocket maximum per shaft for both widths.
- Available in 10 ft (3 m) increments.
- The 38-mm belt has a 1.2 in (30.6 mm) spacing between tabs. The 46-mm belt has a 1.54 in (39.1 mm) spacing.
- Can be used over 0.875 in (22.2 mm) diameter nosebar for tight transfers.



	Belt Data							
Belt Material	Standard Rod Material Ø 0.18 in (4.6 mm)	Belt Strength ¹		Temperature Range (continuous)		Belt Weight		
	0.16 (4.6 (1)(1)	lb	kg	°F	°C	lb/ft	kg/m	
Acetal (38 mm)	Nylon	130	59	-50 to 200	-46 to 93	0.185	0.275	
Acetal (46 mm)	Nylon	150	68	-50 to 200	-46 to 93	0.216	0.321	

		Sprocket a	nd Support Quantity Referen	ce ¹
Belt Wid	lth Range ²	Minimum Number of	We	earstrips
in	mm	Sprockets Per Shaft ³	Carryway	Returnway ⁴
3	76	1	2	2
4	102	1	2	2
6	152	2	2	2
7	178	2	3	2
8	203	2	3	2
10	254	3	3	2
12	305	3	3	2
14	356	5	4	3
15	381	5	4	3
16	406	5	4	3
18	457	5	4	3
20	508	5	5	3
24	610	7	5	3
30	762	9	6	4
32	813	9	7	4
36	914	9	7	4
42	1067	11	8	5
48	1219	13	9	5
54	1372	15	10	6
60	1524	15	11	6
72	1829	19	13	7
84	2134	21	15	8
96	2438	25	17	9
120	3048	31	21	11
144	3658	37	25	13
		odd number of sprockets at nm) centerline spacing. ⁵	Maximum 6 in (152 mm) centerline spacing	Maximum 12 in (305 mm) centerline spacing

Speed/length ratio (V/L)

Divide belt speed (V) by the shaft centerline distance (L). Strength Factor is found at intersection of the speed/length ratio and the appropriate sprocket line. See Belt Selection Instructions for more information.

V = ft/min (m/min); T = number of teeth; L = ft (m)

Percentage of allowable belt strength utilized

- A Sprocket spacing, in
- B Sprocket spacing, mm

¹ Because of the single plate steel design, intralox recommends using twice as many 8- and 12-tooth sprockets as indicated.

² If belt width exceeds a number listed in the table, see the sprocket and support material minimums for the next larger width range. Belts are available in 1.00 in (25.4 mm) increments beginning with minimum width of 3 in (76 mm). If the actual width is critical, contact Intralox Customer Service.

³ This number is a minimum. Heavy-load applications can require additional sprockets.

⁴ For Friction Top applications, use caution and contact Intralox Customer Service.

⁵ Lock down the center sprocket. With only two sprockets, fix the sprocket on the drive journal side only. For lockdown location, see Retainer Rings/Center Sprocket Offset.

							Molde	d Spro	cket¹	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable B	ore Size	s
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	Imperia	l Sizes	Metric	Sizes
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in ²	in	mm ²	mm
12	2.3	58	2.3	58	0.75	19	1.0	1.0	25	25
(3.41%)										
16	3.1	79	3.1	79	1.0	25	1–	1.5	25 to	40
(1.92%)							1.25		30	
18	3.5	89	3.5	89	0.75	19		1.0		25
(1.52%)								1.5		40
20	3.8	97	3.8	97	1.0	25		1.5		40
(1.23%)										
24	4.6	117	4.7	119	1.0	25	1–	1.5	25 to	40
(0.86%)							1.25	2.5	30	60
26	5.1	130	5.1	130	1.0	25	1-	1.5	25 to	40
(0.73%)							1.25		30	
32	6.1	155	6.2	157	1.0	25	1-	1.5	25 to	40
(0.48%)							1.25	2.5	30	60

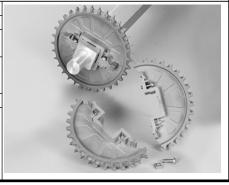
					Ab	rasion	Resis	tant M	etal S _l	procke	t³
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	ore Size	S	
teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric	
(chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round ⁴	Square	Round	Square	
action)	in	mm	in	mm	in	mm			ь		
8	1.6	41	1.6	41	0.164	4.2	3/4	5/8	20		5.5
(7.61%)											7.1
12	2.3	58	2.3	58	0.164	4.2	1.0	1.0	25	25	533
(3.41%)											3/

¹ Contact Intralox Customer Service for lead times.

² Round bore molded and split sprockets are frequently furnished with two keyways. Use of two keys is NOT REQUIRED nor recommended. Round bore sprockets do not have setscrews for locking the sprockets in place. As with square bore sprockets, only the center-most sprocket must be locked down. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.


³ Contact Customer Service for lead times.

⁴ The stainless steel sprockets have a male key in the round bore sizes. Since the key is part of the sprocket, only the center sprockets must be locked down to track the belt. The male key requires running the shaft keyway along the entire length of the shaft. Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885



						S	plit Me	etal Sp	rocket	1		
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	ore Size	s	. president	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric	A CONTRACTOR OF THE PARTY OF TH	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	10	
Action)	in	mm	in	mm	in	mm	in ²	in	mm ²	mm	1 000	
18	3.5	89	3.5	89	1.7	43		1.5		40	20	0
(1.54%)											20000 11	
24	4.6	117	4.7	119	1.7	43	1	1.5	30	40	9	
(0.86%)							1-3/16				30	1 1
							1-1/4					9
26	5.1	130	5.1	130	1.7	43	1	1.5		40	330	WALL OF THE STREET
(0.73%)							1-3/16	2.5	1	60		TO THE PARTY OF TH
,							1-1/4					
32	6.1	155	6.2	157	1.7	43	1	1.5		40		
(0.48%)							1-3/16	2.5	1	60		
							1-1/4					
							1-1/2					

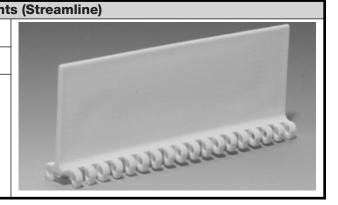
	EZ Track [™] Molded Sprocket ³										
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	. Available Bore Sizes				
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Metric		
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	
Action)	in	mm	in	mm	in	mm	in	in	mm	mm	
16	3.1	79	3.1	79	1.0	25		1.5		40	
(1.92%)											
18	3.5	89	3.5	89	1.0	25		1.5		40	
(1.52%)											
24	4.6	117	4.7	119	1.0	25		1.5		40	
(0.86%)								2.5		60	
32	6.1	155	6.2	157	1.0	25		1.5		40	
(0.48%)								2.5		60	

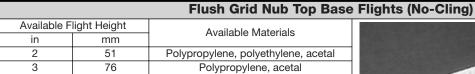
EZ Track [™] Glass Filled Nylon Split Sprocket											ckets ⁴
No. of	Nom.	Nom.	m. Nom. Nom. Nom. Nom. Available Bore Sizes								
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	
Action)	in	mm	in	mm	in	mm	in	in	mm	mm	
24	4.6	117	4.7	119	1.5	38		1.5		40	
(0.86%)											
32	6.1	155	6.2	157	1.5	38		1.5		40	
(0.48%)								2.5		60	
(======================================											

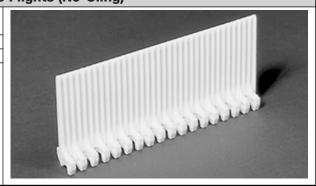
¹ Contact Intralox Customer Service for lead times.

² U.S. key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885 ³ Contact Customer Service for lead times.

⁴ Contact Intralox Customer Service for lead times.




					E	Z Trad	ck [™] /EZ	Z Clear	™ Spr	ocket ¹
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.		vailable E		
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.			tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in	in	mm	mm
12	2.3	58	2.3	58	1.0	25	1.0	1.0	25	25
(3.41%)										
16	3.1	79	3.1	79	1.0	25	1.0		25	
(1.92%)							1-1/16,		30	
							1-1/8,			
							1-1/4			
18	3.5	89	3.5	89	1.0	25	1.0	1.0		25
(1.52%)										
20	3.8	97	3.8	97	1.0	25		1.5		40
(1.23%)										
24	4.6	117	4.7	119	1.0	25	1.0		25	
(0.86%)							1-1/16,		30	
							1-1/8,			
							1-3/16,			
							1-1/4			
26	5.1	130	5.1	130	1.0	25	1.0	1.5	25	40
(0.73%)							1-1/16,		30	
							1-1/8,			
							1-1/4			
32	6.1	155	6.2	157	1.0	25	1.0		25	
(0.48%)							1-1/16,		30	
							1-1/8,		40	
							1-3/16,			
							1-1/4			
							1-1/2			
I	1	1	1	1	1	1	1	1	1	1

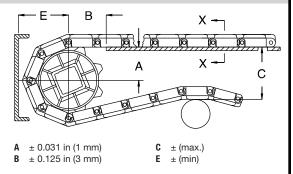

		Flat Top Base Fligh
Available F	light Height	Available Materials
in	mm	Available iviaterials
2	51	Polypropylene, polyethylene, acetal,
		detectable polypropylene A22

- No fasteners required.
- Flat Top flight is smooth (streamlined) on both sides.
- Flat Top base Streamline flights are used in both Flat Top and Flush Grid belts.
- Flights can be cut down to custom heights. Minimum height: 0.25 in (6.4 mm).
- Flat Top minimum recommended indent: 2 in (51 mm).
- Flush Grid minimum recommended indent: 1.5 in (38 mm).

- The No-Cling vertical ribs are on both sides of the flight.
- Each flight rises out of the center of the module, molded as an integral part. No fasteners required.
- Flights can be cut down to custom heights. Minimum height: 0.25 in
- Minimum recommended indent: 1 in (25 mm).

		Sidegua
Availab	le Sizes	Available Materials
in	mm	Available iviaterials
2	51	Polypropylene, polyethylene, acetal
. Nie Castana	a see as deep at	

- No fasteners required.
- When going around the 8, 12, 16, and 18 tooth sprockets, sideguards fan out, opening a gap at the top that can allow small products to fall out. The sideguards stay completely closed when wrapping around the 24 tooth and larger sprockets.
- Standard sideguard orientation is angled inward toward the product (product friendly). If needed, sideguards can be angled outward toward the conveyor.
- Minimum indent: 1.3 in (33 mm).
- Standard gap between the sideguards and the edge of a flight: 0.2 in



Conveyor Frame Dimensions

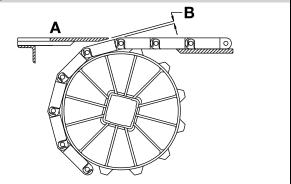
Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see Basic Conveyor Frame Requirements.

Sp	rocket Des	scription	Α		E	3	(C		E
Pitch D	Diameter	No. Teeth	Range (Bottor	n to Top)	i.		i.e.		i	
in	mm	No. reeth	in	mm	in	mm	in	mm	in	mm
		Series 1100	Embedded Diamond	Top, Flat Top,	Flush Grid	, Perforat	ed Flat To	p ¹		
1.6	41	8	0.53-0.59	13-15	1.02	26	1.70	43	1.00	25
2.3	58	12	0.93-0.97	24-25	1.31	33	2.40	61	1.37	35
3.1	79	16	1.31	33	1.51	38	3.20	81	1.75	44
3.5	89	18	1.51	38	1.66	42	3.60	91	1.94	49
3.8	97	20	1.70	43	1.77	45	3.79	96	2.13	54
4.6	117	24	2.08	53	1.92	49	4.75	121	2.60	66
5.1	130	26	2.28	58	1.96	50	5.14	131	2.73	69
6.1	155	32	2.85	72	2.20	56	6.20	155	3.30	84
		Series 1	100 Flush Grid Friction	on Top ¹ , Flush G	arid Frictio	n Top, No	Indent ¹			
1.6	41	8	0.53-0.59	13-15	1.04	27	1.61	41	1.08	27
2.3	58	12	0.93-0.97	24-25	1.30	33	2.36	60	1.46	37
3.1	79	16	1.31	33	1.55	39	3.12	79	1.84	47
3.5	89	18	1.51	38	1.66	42	3.50	89	2.03	51
3.8	97	20	1.70	43	1.77	45	3.88	98	2.22	56
4.6	117	24	2.08	53	1.97	50	4.64	118	2.60	66
5.1	130	26	2.28	58	2.06	52	5.02	127	2.79	71
6.1	155	32	2.85	72	2.25	57	6.16	157	3.36	85
				00 Flush Grid N	ub Top ¹					
1.6	41	8	0.53-0.59	13-15	1.04	27	1.57	40	1.05	27
2.3	58	12	0.93-0.97	24-25	1.30	33	2.32	59	1.42	36
3.1	79	16	1.31	33	1.55	39	3.08	78	1.80	46
3.5	89	18	1.51	38	1.66	42	3.46	88	1.99	51
3.8	97	20	1.70	43	1.70	43	3.84	98	2.18	55
4.6	117	24	2.08	53	1.97	50	4.60	117	2.56	65
5.1	130	26	2.28	58	2.06	52	4.98	127	2.75	70
6.1	155	32	2.85	72	2.25	57	6.13	156	3.32	84
			Serie	es 1100 Cone To	op ¹					
1.6	41	8	0.54-0.60	14-15	1.04	26	1.66	42	1.13	29
2.3	58	12	0.93-0.97	24-25	1.30	33	2.41	61	1.50	38
3.1	79	16	1.32	34	1.55	39	3.17	81	1.88	48
3.5	89	18	1.51	38	1.66	42	3.55	90	2.07	53
3.8	97	20	1.71	43	1.70	43	3.93	100	2.26	57
4.6	117	24	2.09	53	1.96	50	4.69	119	2.64	67
5.1	130	26	2.28	58	2.05	52	5.07	129	2.83	72
6.1	155	32	2.86	73	2.24	57	6.22	158	3.41	87

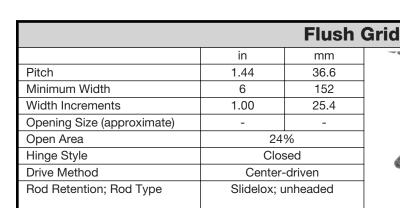
 $^{^{1}}$ See $Anti ext{-}Sag\ Carryway\ Wearstrip\ Configuration}$ for alternate layouts for the B dimension.

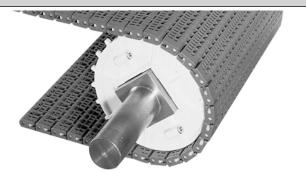


Dead Plate Gap

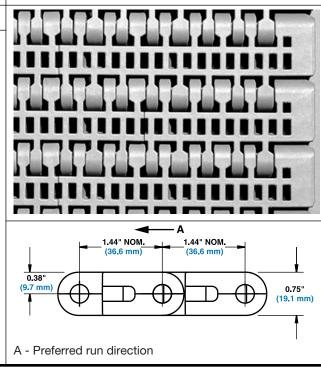
A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.


Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.



SERIES 1100


- A Top surface of dead plate
- B Dead plate gap

	Sprocket Description	Ga	p		
Pitch D	iameter	No. Teeth	in	mm	
in	mm	No. reeur	""	111111	
1.6	41	8	0.058	1.5	
2.3	58	12	0.040	1.0	
3.1	79	16	0.029	0.7	
3.5	89	18	0.026	0.7	
3.8	97	20	0.024	0.6	
4.6	117	24	0.020	0.5	
5.1	130	26	0.018	0.4	
6.1	155	32	0.015	0.4	

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Made of engineered resin for increased stiffness and minimal belt elongation through thermal expansion.
- Slidelox are glass-reinforced polypropylene.
- Molded split plastic sprockets available for easy installation.
- Module thickness: 0.75 in (19.1 mm) which provides superior belt strength and stiffness.

Belt Data									
Belt Material	Standard Rod Material Ø 0.31 in (7.9 mm)	Belt Strength ¹		Temperature Range (continuous)		Belt Weight			
	0.31 11 (7.9 11111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²		
Polypropylene Composite	Polypropylene	3300	4908	34 to 220	1 to 104	2.87	14.01		

		Flat 7
	in	mm
Pitch	1.44	36.6
Minimum Width	6	152
Width Increments	1.00	25.4
Opening Size (approximate)	-	-
Open Area	09	%
Hinge Style	Clos	sed
Drive Method	Center-	-driven
Rod Retention; Rod Type	Slidelox; ι	ınheaded

SERIES 1200

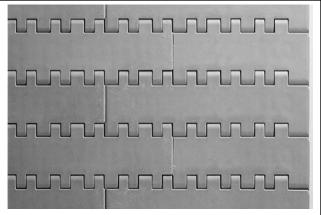
Product Notes

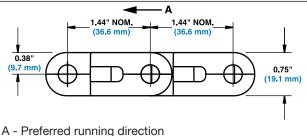
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Made of engineered resin for increased stiffness and minimal belt elongation through thermal expansion.
- Slidelox are glass-reinforced polypropylene.

Belt Material

Polypropylene Composite

EC Polypropylene Composite


- Molded split plastic sprockets available for easy installation.
- Module thickness: 0.75 in (19.1 mm) provides superior belt strength and stiffness. In the preferred running direction, Series 1200 belts are rated 4000 lb/ft (5950 kg/m).
- Belt strength rating is dependent on preferred running direction. If the belt runs in the opposite direction, the belt rating is 2000 lb/ft (3000 kg/m).
- Belt strength for narrow belts: 3750 lb/ft (5580 kg/m) for belt widths under 60 in (1524 mm), 3250 lb/ft (4835 kg/m) for belt widths under 30 in (762 mm), and 2750 lb/ft (4090 kg/m) for belt widths under 12 in (305 mm). For belt widths under 60 in (1524 mm), contact Intralox Customer Service if a more precise belt strength is required.


Standard Rod Material

Ø 0.31 in (7.9 mm)

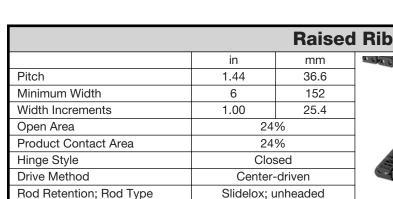
Polypropylene Composite

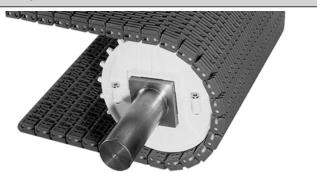
Polypropylene Composite

Belt Data										
Belt Strength ¹			ure Range nuous)	Belt W	/eight					
lb/ft	kg/m	kg/m °F °C		lb/ft²	kg/m²					
4000	5950	-20 to 220	-29 to 104	3.17	15.45					

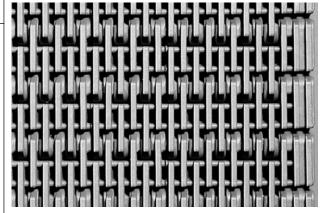
-29 to 104

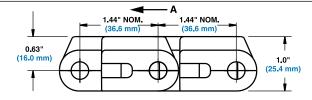
15.66


3.2


-20 to 220

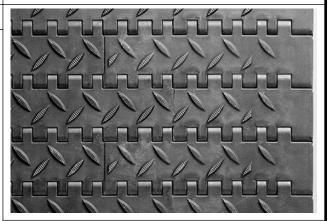
1 Belt strength rating depends on preferred belt running direction. If run in the opposite direction, the belt rating is 2000 lb/ft (3000 kg/m). The belt strength for narrow belts is reduced to 3750	lb/ft
(5580 kg/m) for belt widths under 60 in (1524 mm), 3250 lb/ft (762 kg/m) for belt widths under 30 in (762 mm), and 2750 lb/ft (4090 kg/m) for belt widths under 12 in (305 mm). Contact Intr	alox
Customer Service if a more precise belt strength is required for belt widths under 60 in (1524 mm).	

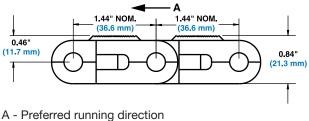

4000


5950

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- · Made of engineered resin for increased stiffness and minimal belt elongation through thermal expansion.
- Slidelox are glass-reinforced polypropylene.
- Molded split plastic sprockets available for easy installation.
- Module thickness: 1.0 in (25.4 mm) provides superior belt strength and stiffness.

A - Preferred run direction


Belt Data									
Belt Material	Standard Rod Material Ø 0.31 in (7.9 mm)	Belt Strength ¹		Temperature Range (continuous)		Belt Weight			
	9 0.31 11 (7.9 11111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²		
Polypropylene Composite	Polypropylene	3300	4908	34 to 220	1 to 104	3.3	16.11		

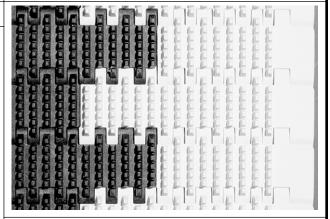


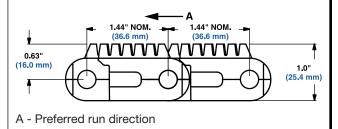
		Non S	kid
	in	mm	1
Pitch	1.44	36.6	40
Minimum Width	6	152	
Width Increments	1.00	25.4	
Opening Size (approximate)	-	-	
Open Area	09	%	
Hinge Style	Clos	sed	'
Drive Method	Center-		
Rod Retention; Rod Type	Slidelox; ι	ınheaded	

SERIES 1200

- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- · Made of engineered resin for increased stiffness and minimal belt elongation through thermal expansion. Engineered resin is a static dissipative material that does not rely on moisture to dissipate a charge, so it is effective in all environments.
- Slidelox are glass-reinforced polypropylene.
- Molded split plastic sprockets available for easy installation.
- Module thickness: 0.75 in (19.1 mm) provides superior belt strength and stiffness. In the preferred running direction, Series 1200 belts are rated 4000 lb/ft (5950 kg/m).
- Non Skid indent: 1.0 in (25.4 mm).
- 1.44 in (36.6 mm) pitch allows use of smaller drive sprockets than traditional moving-platform belts, providing tighter transfers and requiring shallower floor trenches for installation.

Belt Data									
Belt Material	Standard Rod Material Ø 0.31 in (7.9 mm)	Belt Strength ¹		Temperature Range (continuous)		Belt Weight			
	0.31 111 (7.9 11111)	lb/ft	kg/m	kg/m °F °C lb/ft²		lb/ft²	kg/m²		
EC Polypropylene Composite	Polypropylene Composite	4000	5950	-20 to 220	-29 to 104	3.21	15.65		


¹ Belt strength rating depends on preferred belt running direction. If run in the opposite direction, the belt rating is 2000 lb/ft (3000 kg/m). The belt strength for narrow belts is reduced to 3750 lb/ft (5580 kg/m) for belt widths under 60 in (1524 mm), 3250 lb/ft (762 kg/m) for belt widths under 30 in (762 mm), and 2750 lb/ft (4090 kg/m) for belt widths under 12 in (305 mm). Contact Intralox Customer Service if a more precise belt strength is required for belt widths under 60 in (1524 mm).



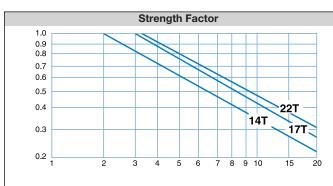
	No	n Skid Ra
	in	mm
Pitch	1.44	36.6
Minimum Width	6	152
Width Increments	1.00	25.4
Opening Size (approximate)	-	-
Open Area	09	%
Product Contact Area	10	%
Hinge Style	Clos	sed
Drive Method	Center-	-driven
Rod Retention; Rod Type	Slidelox; ι	unheaded

- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Made of engineered resin for increased stiffness and minimal belt elongation through thermal expansion. Engineered resin is a static dissipative material that does not rely on moisture to dissipate a charge, so it is effective in all environments.
- Tread pattern provides a non-skid walking surface to increase safety.
- Staggered yellow edges make it easy to distinguish the moving belt from the stationary floor.
- Slidelox are glass-reinforced polypropylene.
- Not recommended for product accumulation conditions. Contact Intralox Sales Engineering for information about friction values between product and belt.
- 1.44 in (36.6 mm) pitch allows use of smaller drive sprockets than traditional moving-platform belts, providing tighter transfers and requiring shallower floor trenches for installation.
- Rib indent: 1.0 in (25 mm).

Belt Data										
Belt material	Standard rod material Ø 0.31 in (7.9 mm)	Belt st	rength1		ture range nuous)	Belt w	/eight			
	0.31 III (7.9 IIIII)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²			
EC polypropylene composite	Polypropylene Composite	4000	5950	-20 to 220	-29 to 104	3.58	17.48			
UV resistant acetal ²	Acetal	2500	3713	-50 to 150	-46 to 66	4.51	22.02			

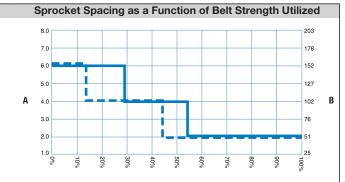
¹ Belt strength rating depends on preferred belt running direction. If run in the opposite direction, the belt rating is 2000 lb/ft (3000 kg/m). The belt strength for narrow belts is reduced to 3750 lb/ft (5580 kg/m) for belt widths under 60 in (1524 mm), 3250 lb/ft (762 kg/m) for belt widths under 30 in (762 mm), and 2750 lb/ft (4090 kg/m) for belt widths under 12 in (305 mm). Contact Intralox Customer Service if a more precise belt strength is required for belt widths under 60 in (1524 mm).

² UV resistant acetal requires special sprockets. Contact Intralox Customer Service when ordering sprockets for this belt.


	Sprocket and Support Quantity Reference								
Belt Wid	th Range ¹	Minimum Number of	<u> </u>	earstrips					
in	mm	Sprockets Per Shaft ²	Carryway	Returnway					
6	152	2	2	2					
7	178	2	2	2					
8	203	2	2	2					
9	229	2	2	2					
10	254	2	3	2					
12	305	3	3	2					
14	356	3	3	3					
15	381	3	3	3					
16	406	3	3	3					
18	457	3	3	3					
20	508	3	4	3					
24	610	5	4	3					
30	762	5	5	4					
32	813	5	5	4					
36	914	7	5	4					
42	1067	7	6	5					
48	1219	9	7	5					
54	1372	9	7	6					
60	1524	11	8	6					
72	1829	13	9	7					
84	2134	15	11	8					
96	2438	17	12	9					
120	3048	21	15	11					
144	3658	25	17	13					
145	3683	25	18	14					
146	3708	25	18	14					
147	3734	25	18	14					
148	3759	25	18	14					
149	3785	25	18	14					
150	3810	25	18	14					
151	3835	25	18	14					
152	3861	25	18	14					
153	3886	25	18	14					
154	3912	25	19	14					
155	3937	25	19	14					
156	3962	27	19	14					
157	3988	27	19	15					
158	4013	27	19	15					
159	4039	27	19	15					
160	4064	27	19	15					
161	4089	27	19	15					
162	4115	27	19	15					
163	4140	27	20	15					
164	4166	27	20	15					
165	4191	27	20	15					
166	4216	27	20	15					
167	4242	27	20	15					
168	4267	29	20	15					
169	4293	29	20	16					
170	4318	29	20	16					
171	4343	29	20	16					
172	4369	29	21	16					
173	4394	29	21	16					
174	4420	29	21	16					
175	4445	29	21	16					

¹ If belt width exceeds a number listed in the table, see the sprocket and support material minimums for the next larger width range. Belts are available in 1.00 in (25.4 mm) increments beginning with minimum width of 6 in (152 mm). If the actual width is critical, contact Intralox Customer Service.

 $^{^{\}rm 2}$ This number is a minimum. Heavy-load applications can require additional sprockets.


	Sprocket and Support Quantity Reference									
176	4470	29	21	16						
177	4496	29	21	16						
178	4521	29	21	16						
179	4547	29	21	16						
180	4572	31	21	16						
181	4597	31	22	17						
182	4623	31	22	17						
183	4648	31	22	17						
184	4674	31	22	17						
185	4699	31	22	17						
For other w	vidths, use an o	dd number of sprockets at	Maximum 6 in (152 mm) centerline	Maximum 12 in (305 mm) centerline						
maxim	um 6 in (152 mr	n) centerline spacing.1	spacing	spacing						

Speed/length ratio (V/L)

Divide belt speed (V) by the shaft centerline distance (L). Strength Factor is found at intersection of the speed/length ratio and the appropriate sprocket line. See Belt Selection Instructions for more information.

V = ft/min (m/min); T = number of teeth; L = ft (m)

SERIES 1200

Percentage of allowable belt strength utilized

- Sprocket spacing, in
- Sprocket spacing, mm

Solid line polypropylene composite rods Dashed line polypropylene rods

	Plastic Split Sprockets ²									
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Available Bore Sizes			
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S	S.	Metric	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in ³	in ⁴	mm ³	mm
14	6.5	165	6.3	161	1.5	38		1.5		
(2.51%)								2.5		
17	7.9	201	7.7	196	1.5	38		2.5		
(1.70%)										
22	10.2	259	10.1	255	1.67	44		2.5		
(1.02%)					1.5	38	3.5	3.5		90

Lock down the center sprocket. With only two sprockets, fix the sprocket on the drive journal side only. See Locked Sprocket Location chart in the Installation Instruction Guidelines or contact Intralox Customer Service for lockdown location.

² Contact Intralox Customer Service for lead times.

³ Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

⁴ The 2.5" square bore is created by using a bore adapter in the 3.5" square bore sprocket.

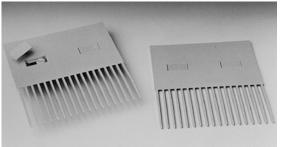
						S	plit Me	tal Sp	rocket	1	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	ore Size	S	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	
Action)	in	mm	in	mm	in	mm	in	in	mm	mm	4
12	5.6	142	5.4	137	1.7	43		2.5			
(3.41%)											
14	6.5	165	6.3	161	1.7	43		1.5			
(2.51%)								2.5			
22	10.2	259	10.1	255	1.7	43		2.5			1
(1.70%)								3.5			

Hold Down Tabs

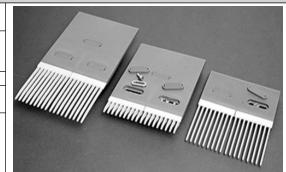
Available on Non Skid and Flat Top belts.

- Carryway wearstrips or rollers that engage the tabs are only required at the transition between the horizontal sections and angled sections. This approach reduces initial system cost, as well as ongoing maintenance cost and effort.
- Ensure that adequate lead-in radii and/or angles are used to prevent the possibility of snagging the tab on the frame.
- Tabs should be spaced every other row (2.9 in [73.2 mm]) along the length of the belt. Tabs can be spaced every fourth row (5.8 in [146.3 mm]) for lightly loaded applications.
- Each line of tabs along the length of the belt reduces the available number of sprockets by 2. Belt rating is reduced by 1,300 lb (590 kg) for each line of tabs.
- A carryway radius should be designed at the transition between horizontal sections and angled sections. This radius must be at least 48 in (1.22 m) for belts that are loaded near the belt strength rating. This radius is one of the most important factors to consider when designing highly loaded conveyors that utilize Hold Down tabs.
- Strength rating for each Hold Down tab: 100 lb (45.4 kg) of force perpendicular to the hold down surface.

			I	nsert Nut	
Available	Base Belt Style	Available Insert Nut Sizes			
Flat Top -	Polypropylene (0.3125 in - 18 (8 mm - 1.25 mm)			
Belt	Maximum Fi	xture Weight	Fastener Torque Specification		
Material	lb/nut1	kg/nut ²	in-lb	N-m	
Polypropylene Composite	355	155	100	11.3	
 Insert Nuts a 	allow easy attacl	nment of fixtures	to the belt.		


- All nut placement dimensions are referenced from the edge of the belt when placing an order. Contact Intralox Customer Service for nut location options available for your application.
- Ensure attachments connected to more than one row do not prohibit belt rotation around the sprockets.
- Do not locate sprockets in-line with the insert nuts.
- For attachment bases that extend across multiple rows, ensure reduced backbend is considered during design.
- Minimal indent from the edge of the belt: 0.833 in (21 mm) for oddwidth belts, 1.833 in (47 mm) for even-width belts.
- Minimal distance between nuts across the width of the belt: 1.33 in (34
- Spacing along the length of the belt: 1.44 in (36.6 mm) increments.

Finger	Transfe	r Plates


Available	e Widths	Number of	Available Materials		
in	mm	Fingers	Available ivialerials		
6	152	18	Polypropylene		

- Identical to Series 400 finger transfer plates.
- Eliminates product transfer and tipping problems. The fingers extend between the belt ribs to allow a smooth continuation of the product flow as the belt engages the sprockets.
- Easily installed on the conveyor frame with the supplied shoulder bolts. Caps easily snap into place over the bolts, and keep foreign materials out of the slots.

Two-Material Finger Transfer Plates								
Α	vailable Widths	No. of	Available Materials					
in	mm	Fingers	Available iviaterials					
6	152	18	Glass-filled					
			thermoplastic fingers,					
			acetal backplate	The same of the sa				
	Available Conf	igurations						
Standard	Standard	Glass-Handling						
Standard	Extended Back		***************************************					
Long	Long fingers with an	Short	Short fingers with extended					
fingers	extended backplate	backplate						
with a		backpla						
short		with a sh	*************					
backplate		fingers v	fingers with extended backplate					
Drovidoo b	ich atronath finance combin	مل مطانيين امم	ur friction bookslote	1				

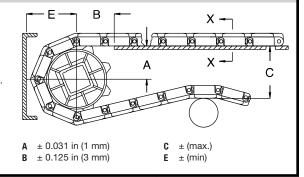
- Provides high-strength fingers combined with a low-friction backplate.
- Eliminates product transfer and tipping problems. The 18 fingers extend between the belt ribs allowing a smooth, continuous product flow as the belt engages the sprockets.
- Low-friction backplate is permanently attached to the two high-strength finger inserts.
- Plastic shoulder bolts and bolt covers are included for installing the standard two-material finger transfer plates (FTPs).
- Mounting hardware for the glass-handling two-material FTPs is sold separately. Mounting hardware consists of stainless steel oval washers and bolts, which give more secure fastening for tough, glass applications.
- For applications that require better chemical resistance, Introlox offers a single-material polypropylene standard FTP. Mounting hardware for this finger transfer plate includes plastic shoulder bolts and snap-cap bolt covers.
- Long fingers provide good support for unstable products like PET containers and cans. Short fingers are sturdy enough for harsh, brokenglass applications. These fingers are designed to resist breaking, but if confronted with deeply embedded glass, the individual fingers yield and break off, preventing belt or frame damage.
- Short backplate has two attachment slots and the extended backplate has three attachment slots.
- Series 400 and Series 1200 use the same FTPs.
- For best product transfer, use 10.2 in (259 mm) PD, 22-tooth sprockets with glass-handling finger transfer plates. 10.2 in (259 mm) PD 22-tooth sprockets are the maximum-size sprockets to use with short finger glasshandling finger transfer plates.

Dimensional Requirements for Finger Transfer Plate Installation Two-Material Two-material glass handling finger transfer plate shown Standard Long Glass Standard Glass Long Fingers Handling Handling Н Fingers -Extended Back Short Mid-Length 2.25" (57 mm) Short Back Fingers -Fingers -Extended Extended Back mm in mm mm in mm in in 1.5" 38 mm) 3.50 89 3.50 89 3.50 89 3.50 89 G 0.31 0.31 8 0.31 8 0.31 8 8 Н 7.25 184 10.75 273 8.26 210 9.04 230 5.91 150 5.91 150 5.91 150 5.91 150 H 3.00 76 3.00 3.00 76 3.00 76 76 37 1.45 Κ 1.45 1.45 37 1.45 37 37 2.00 51 5.50 140 5.50 140 5.50 140 K Spacing at Polypropylene Composite ambient 152.4 152.4 152.4 6.0 152.4 6.0 6.0 0.5" (13 m temperature 9 V 9 V 9 V 9 Ġ 1 Spacing 2 0.5 in (13 mm) Radius (leading edge of frame member) 3 Frame member

Transfer Plates¹

			Self-Clearing Finger			
Availab	le Width	No. of	Available Materials			
in	mm	Fingers	Available Materials			
6	152	18	Glass-Filled			
			Thermoplastic			
Consists of a finger transfer plate and a transfer edge belt that are						

- designed to work together.
- Molded with robust tracking tabs for belt support in heavy sideloading conditions.
- · Flat, smooth top surface provides excellent lateral movement of • Fully flush edges, headed rod retention system, and nylon rods for
- superior wear resistance.
- Eliminates the need for a sweeper bar, a pusher arm, or wide transfer plates. Transfers are smooth and 100% self-clearing, making right angle transfers possible for all container types.
- Ideal for warmer/cooler applications with frequent product changeovers.
- Bi-directional system allows same transfer belt use for both lefthand and right-hand transfers.
- · Compatible with any series and style of Intralox belt on the discharge and infeed conveyors.
- Capable of transferring product to and from Intralox Series 400, Series 1200, and Series 1900 Raised Rib belts.
- Robust design for durability in tough, glass applications.
- Easily installed and secured to mounting plates of any thickness with stainless steel bolts and oval washers that allow movement with belt expansion and contraction.
- Stainless steel hardware is sold separately.

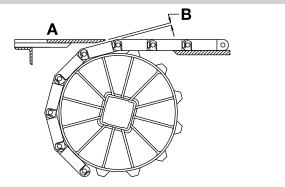

Dimen	sional R	Requirer	ments for Self-Clearing Finger Transfer Plate Installations¹
	Self-C		
	in	mm	H
F	5.25	133.4	1.75" (44.5 mm)
G	1.15	29.2	
Н	8.05	204.5	1
I	5.93	150.6	1
J	2.92	74.2	1.46" U
K	1.51	38.4	1
L	2.71	68.8	
			J. U O
			2 (15.0 mm) 2 (15.0 mm)
Spacing at ambie	nt temperatur	е	A 1 2
PP Composite	6.000 in	152.4	1 Spacing
11 Composite	5.000 iii	mm	2 Frame Member

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

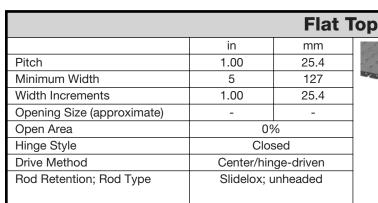
For complete descriptions of the dimensions, see Basic Conveyor Frame Requirements.

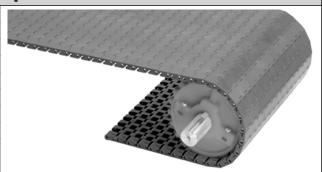

Sprocket Description		Α		В		С		E		
Pitch D	Diameter	No. Teeth	Range (Bottor	n to Top)	in mm		in	mm	in	mm
in	mm	No. reeur	in	mm	""	mm	""	111111	""	111111
			Series 12	200 Flat Top, Flu	ısh Grid					
5.6	142	12	2.31-2.41	59-61	2.15	55	5.56	141	3.22	82
6.5	165	14	2.78-2.87	71-73	2.35	60	6.48	165	3.87	98
7.9	201	17	3.48-3.55	88-90	2.62	67	7.85	199	4.55	116
10.2	259	22	4.64-4.69	118-119	3.02	77	10.13	257	5.69	145
Series 1200 Non Skid Raised Rib, Raised Rib										
5.6	142	12	2.31-2.41	59-61	2.15	55	5.81	148	3.47	88
6.5	165	14	2.78-2.87	71-73	2.35	60	6.73	171	4.12	105
7.9	201	17	3.48-3.55	88-90	2.62	67	8.10	206	4.80	122
10.2	259	22	4.64-4.69	118-119	3.02	77	10.38	264	5.94	151
			Ser	ies 1200 Non Sk	kid					
5.6	142	12	2.31-2.41	59-61	2.15	55	5.65	144	3.30	84
6.5	165	14	2.78-2.86	71-73	2.34	59	6.56	167	3.76	96
7.9	201	17	3.51-3.58	89-91	2.57	65	7.99	203	4.47	114
10.2	259	22	4.67-4.73	119-120	3.02	77	10.29	261	5.62	143

Dead Plate Gap

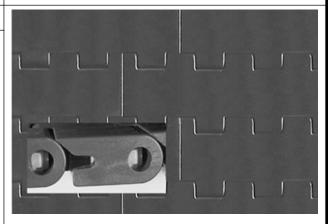
A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

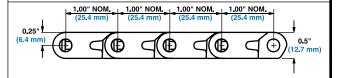
When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.


Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.



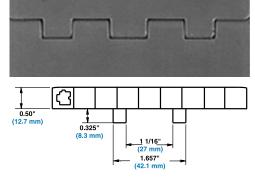
- A Top surface of dead plate
- B Dead plate gap

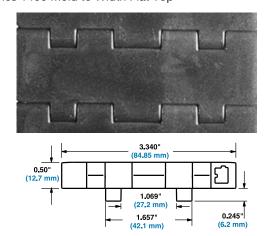

	Sprocket Description	Gap		
Pitch D	iameter	No. Teeth	in	mm
in	mm	No. Teeth	""	
5.6	142	12	0.095	2.4
6.5	165	14	0.081	2.1
7.9	201	17	0.067	1.7
10.2	259	22	0.052	1.3



- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- · Smooth, closed surface with fully flush edges.
- Flat Top surface provides excellent lateral movement of containers. Ideal for container handling.
- Slidelox are available in polypropylene or acetal. For Easy Release PLUS belts, use polypropylene Slidelox. For Easy Release Traceable polypropylene belts, use detectable polypropylene Slidelox.
- · Robust design offers excellent belt and sprocket durability, especially in tough glass applications.
- Sprockets are all plastic, with large lug teeth for excellent durability and wear life.
- · Most sprockets use a split design, so shafts do not have to be removed for retrofits and changeovers.

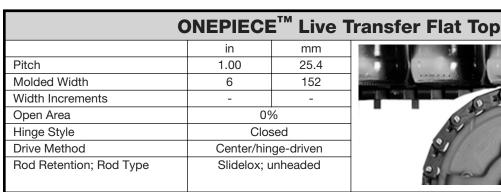
Inset: Slidelox edge


Belt Data								
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt strength		Temperature range (continuous)		Belt weight		
	0.24 III (6.1 IIIIII)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	
Acetal	Nylon	2500	3720	-50 to 200	-46 to 93	2.75	13.43	
Polypropylene	Nylon	1800	2678	34 to 220	1 to 104	1.85	9.03	
HHR nylon	Nylon	2000	2976	-50 to 310	-46 to 154	2.32	11.33	
HSEC acetal	Nylon	1600	2380	-50 to 200	-46 to 93	2.69	13.13	

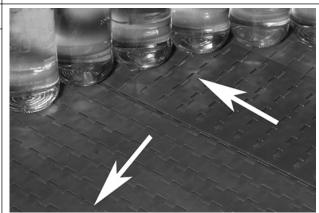

	Mol	d to Widt	th Flat Top
	in	mm	26
Pitch	1.00	25.4	
Molded Widths	3.25	83	
	4.5	114	
	6.0	152	
	7.5	191	
	-	85.0	all
Opening Size (approximate)	-	-	
Open Area	09	%	200
Hinge Style	Clos	sed	
Drive Method	Center/hin	ige-driven	
Rod Retention; Rod Type	Slidelox; ι	unheaded	

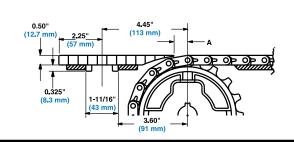
- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- · Smooth, closed surface with fully flush edges.

- Flat Top provides excellent lateral movement of containers. Ideal for container handling.
- · Tracking tabs provide lateral tracking.
- Slidelox are available in polypropylene or acetal.
- · Robust design offers excellent belt and sprocket durability, especially in tough, glass applications.
- · Sprockets are all plastic.
- · Most sprockets use a split design, so shafts do not have to be removed for retrofits and changeovers.
- Split sprockets are designed with thick, lug-style teeth for excellent durability and wear life.
- Sprocket placement: Use one sprocket on 3.25 in (83 mm) mold to width belts, and on 4.5 in (114 mm) tabbed mold to width belts. Use one or two sprockets on 4.5 in (114 mm) no tab mold to width belts. Use up to three sprockets on 6.0 in (152 mm) belts, and on 7.5 in (191 mm) mold to width belts.
- Optional tracking tabs fit into single barreled belt wearstrip with 1.75 in (44.5 mm) spacing.
- Available in 10 ft (3 m) increments.
- Width tolerances: +0.000/-0.020 in (+0.000/-0.500 mm).

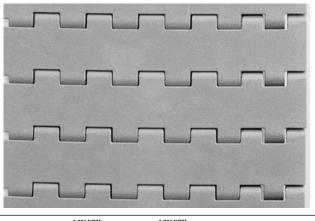

Series 1400 Mold to Width Flat Top

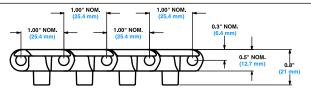
Series 1400 Mold to Width Flat Top 85 mm


	Belt Data													
Relt \	Nidth		Standard rod material Ø	Relt sti	renath1	Temperat	Belt weight							
DOIL	viatii	Belt material	0.24 in (6.1 mm)	Belt strength ¹		(conti	nuous)	Ta	ab	No	tab			
inch	mm		0.24 1 (0.1 11 11)	lb	kg	°F	°C	lb/ft	kg/m	lb/ft	kg/m			
3.25	83	Acetal	Nylon	700	318	-50 to 200	-46 to 93	0.80	1.19	0.75	1.12			
	85	Acetal	Nylon	700	318	-50 to 200	-46 to 93	0.80	1.19	-	-			
4.5	114	Acetal	Nylon	850	386	-50 to 200	-46 to 93	1.13	1.68	1.07	1.59			
6.0	152	Acetal	Nylon	1200	544	-50 to 200	-46 to 93	1.40	2.08	1.35	2.01			
7.5	191	Acetal	Nylon	1550	703	-50 to 200	-46 to 93	1.75	2.60	1.71	2.54			
6.0	152	Polypropylene	Nylon	850	386	34 to 220	1 to 104	0.95	1.14	0.90	1.34			
4.5	114	HHR nylon	Nylon	850	386	-50 to 310	-46 to 154	0.95	1.41	1.07	1.59			
6.0	152	HHR nylon	Nylon	1200	544	-50 to 310	-46 to 154	1.18	1.76	1.35	2.01			
7.5	191	HHR nylon	Nylon	1550	703	-50 to 310	-46 to 154	1.47	2.19	1.71	2.54			

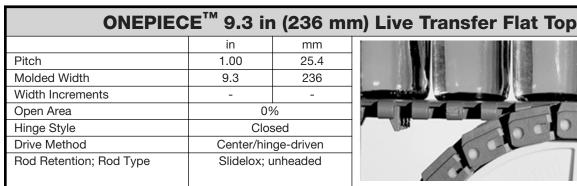

¹ Ratings are based on non-tabbed belts using the maximum number of sprockets.

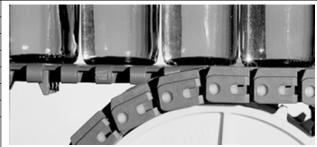
- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Smooth, flat surface with fully flush edges.
- Transfer edge is an integral part of the belt.
- Tracking tabs support the belt in heavy, side-loading applications.
- Nylon rods provide superior wear resistance.
- Slidelox are available in polypropylene or acetal.
- Designed for smooth, self-clearing, right angle transfers onto takeaway belts.
- · Provides excellent lateral movement of PET, glass, and other containers. Provides excellent belt and sprocket durability, especially in tough, glass applications.
- Addition of a fixed frame support can be necessary. The support ensures that the transfer belt does not snag when it intersects with the takeaway belt. Add support below the transfer belt, before the transfer, See Series 900. Series 1100, and Series 1400 ONEPIECE Live Transfer Belts.
- Most sprockets use the split design, so shafts do not have to be removed for retrofits and changeovers.
- Sprockets are all plastic, with large lug teeth for excellent durability and wear life.
- When moving products from transfer belt to takeaway belt, ensure the transfer belt surface is no more than 0.06 in (1.5 mm) above the takeaway belt surface. When product is moving from the infeed belt onto the transfer belt, ensure the belts surfaces are level.
- Available in 10 ft (3 m) increments.

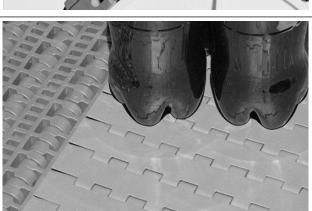


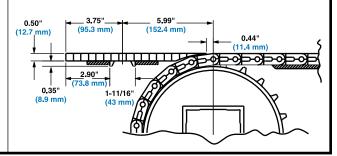

Belt Data											
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt st	rength	Temperat (contir	ure range nuous)	Belt weight					
		lb	kg	°F	°C	lb/ft	kg/m				
Acetal	Nylon	850	386	-50 to 200	-46 to 93	1.25	1.86				

6 in (152 mr	n) Flat To	p Mold t
	in	mm
Pitch	1.00	25.4
Minimum Width	6	152
Width Increments	-	-
Opening Sizes (approx.)	-	-
Open Area	09	%
Hinge Style	Clos	sed
Drive Method	Center/hin	ge-driven
Rod Retention; Rod Type	Snap-lock	r; headed

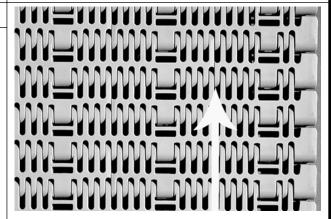



- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Fully flush edges.
- Robust design offers excellent belt and sprocket durability, especially in tough, material-handling applications.
- Belt is bi-directional. It can be used for left-hand and right-hand transfers.
- 100% self-clearing transfers of all container types, including energy drink cans, when used with finger transfer plates.
- All sprockets are plastic.
- Most sprockets use the split design so shafts do not have to be removed for retrofits and changeovers.

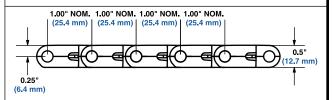


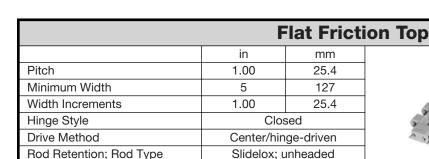

Belt Data											
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt st	rength		ure range nuous)	Belt weight					
		lb	kg	°F	°C	lb/ft	kg/m				
Acetal	Nylon	1000	454	-50 to 200	-46 to 93	1.08	1.61				

- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Smooth, flat surface with fully flush edges.
- Transfer edge is an integral part of this belt.
- Tracking tabs support the belt in heavy, side-loading applications.
- Nylon rods provide superior wear resistance.
- Slidelox are available in polypropylene or acetal.
- Designed for smooth, self-clearing, right angle transfers onto takeaway belts.
- · Provides excellent lateral movement of PET, glass, and other containers. Provides excellent belt and sprocket durability, especially in tough, glass applications.
- Addition of a fixed frame support can be necessary. The support ensures that the transfer belt does not snag when it intersects with the takeaway belt. Add support below the transfer belt, before the transfer, See Series 900. Series 1100, and Series 1400 ONEPIECE Live Transfer Belts.
- Most sprockets feature a split design, so shafts do not have to be removed for retrofits and changeovers.
- Sprockets are all plastic, with large lug teeth for excellent durability and wear life.
- When moving products from transfer belt to takeaway belt, ensure the transfer belt surface is no more than 0.06 in (1.5 mm) above the takeaway belt surface. When product is moving from the infeed belt onto the transfer belt, ensure the belts surfaces are level.
- Tracking tab height: 0.35 in (8.9 mm).
- Tab spacing: 1.6875 in (43 mm).
- Available in 10 ft (3 m) increments.

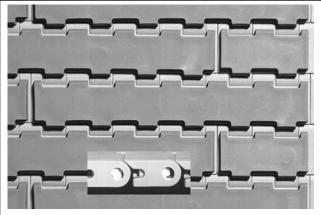


Belt Data											
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt st	rength	Temperat (contir	ure range nuous)	Belt weight					
		lb	kg	°F	°C	lb/ft	kg/m				
Acetal	Nylon	1550	703	-50 to 200	-46 to 93	1.86	2.77				

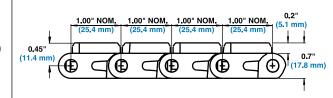

		Flush
	in	mm
Pitch	1.0	25.4
Minimum Width	9	229
Width Increments	1.0	25.4
Opening Size (approx.)	0.17×0.30	4.2 × 7.6
Open Area	21	%
Hinge Style	Clos	sed
Drive Method	Center/hin	ge-driven
Rod Retention; Rod Type	Slidelox; u	ınheaded


- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Fully flush edges.
- Polypropylene belts are gray with blue polypropylene Slidelox. Acetal belts are gray with yellow acetal Slidelox.
- Slidelox are available in polypropylene or acetal.
- Installation is the same as current Series 1400 belts, with the addition of a locked sprocket location chart and preferred run direction.
- Minimum sprocket spacing: 3 in (76.2 mm)
- Recommended adjusted belt pull: greater than 900 lb/ft (1339 kg/m). Maximum recommended sprocket spacing: 6 inches (152.4 mm).

Arrow indicates run direction

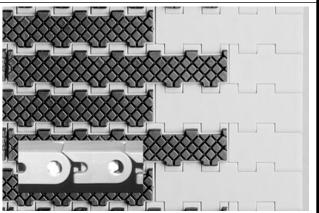


	Belt Data											
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt sti	ength1		ure range nuous)	Belt weight						
	0.24 1 (0.1 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²					
Polypropylene	Polypropylene	1800	2679	34 to 220	1 to 104	1.61	7.86					
Polypropylene	Nylon	1800	2679	34 to 220	1 to 104	1.66	8.10					
Acetal	Nylon	2500	3720	-50 to 200	-46 to 93	2.52	12.30					

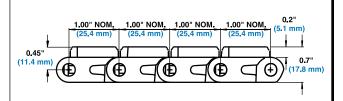


- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- · Fully flush edges.
- Available in gray polypropylene with gray rubber, gray polypropylene with black rubber, white polypropylene with white rubber, and black polyethylene with black rubber.
- Slidelox are available in polypropylene or acetal.
- Robust design offers excellent belt and sprocket durability, especially in tough, material-handling applications.
- Most sprockets feature a split design, so shafts do not have to be removed for retrofits and changeovers.
- If a center-drive setup is used, it can be necessary to retain the belt laterally, by placing collars at the backbend roller, before the drive.
- Temperature, environmental conditions, and product characteristics affect the maximum degree of incline.
 Consider these factors when designing conveyor systems using these belts.
- Standard indents for Friction Top surface: 2.0 in (50.8 mm) and 0.22 in (5.6 mm). Indent availability varies by material.
 Contact Intralox Customer Service for more information.

Inset: Slidelox rod retention feature


	Belt Data													
Base Belt	Base/Friction Color	Standard Rod Material Ø	Belt Strength		Temperature Range (continuous)		Belt Weight		Friction Top	Agency Acceptability				
Material		0.24 in (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	Hardness	FDA (USA)	EU MC ^b			
Polypropylene	Gray/gray	Nylon	1800	2678	34 to 150	1 to 66	2.62	12.79	64 Shore A					
Polypropylene	Gray/black	Nylon	1800	2678	34 to 150	1 to 66	2.62	12.79	55 Shore A	а				
Polypropylene	White/white	Nylon	1800	2678	34 to 150	1 to 66	2.62	12.79	55 Shore A	а	С			
Polyethylene	Black/black	Nylon	1000	1488	-50 to 120	-46 to 49	2.70	13.18	50 Shore A	а				
Polypropylene	Black/TPV 65A black	Nylon	1800	2678	34 to 150	1 to 66	2.62	12.79	65 Shore A					

- - Fully compliant
- a FDA Compliant with Restriction: Do not use in direct contact with fatty foods.
- b European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.
- c EU compliant with Restriction: Do not use in direct contact with fatty foods.


	Sq	uare Fric
	in	mm
Pitch	1.00	25.4
Minimum Width	6	152
Width Increments	1.00	25.4
Hinge Style	Clos	sed
Drive Method	Center/hin	ige-driven
Rod Retention; Rod Type	Slidelox; ι	unheaded

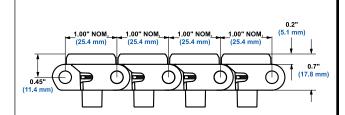
ction Top

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- · Fully flush edges.
- Available in gray polypropylene with black rubber and black polyethylene with black rubber.
- Slidelox are available in polypropylene or acetal.
- Robust design offers excellent belt and sprocket durability, especially in tough, material-handling applications.
- If a center-drive setup is used, it can be necessary to retain the belt laterally, by placing collars at the backbend roller, before the drive.
- Temperature, environmental conditions, and product characteristics affect the maximum degree of incline.
 Consider these factors when designing conveyor systems using these belts.
- Sprockets are all plastic.
- Most sprockets feature a split design, so shafts do not have to be removed for retrofits and changeovers.
- Minimum nominal alternating edge indents: 2 in (51 mm) and 3 in (76 mm).

Inset: Slidelox rod retention feature

Belt Data													
Base/Friction	Standard Rod Material Ø	Belt Strength		Temperature Range (continuous)		S I Relt Weight		Friction Top	Age Accep	,			
Color	0.24 in (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	Hardness	FDA (USA)	EU MC ^b			
Gray/Black	Nylon	1800	2678	34 to 150	1 to 66	2.60	12.69	50 Shore A	а				
Black/Black	Nylon	1000	1488	-50 to 120	-46 to 49	2.68	13.08	50 Shore A	а				
	Color Gray/Black	Base/Friction	Base/Friction Material Ø 0.24 in (6.1 mm) Ib/ft Gray/Black Nylon 1800	Base/Friction Color Standard Rod Material Ø 0.24 in (6.1 mm) Belt Strength Gray/Black Nylon 1800 2678	Base/Friction Material Ø 0.24 in (6.1 mm) Belt Strength (continuation Color 1800 2678 34 to 150 3678 36	Base/Friction Color Standard Rod Material Ø 0.24 in (6.1 mm) Belt Strength Temperature Range (continuous) Belt Strength "F °C Belt Strength "F °C Gray/Black Nylon 1800 2678 34 to 150 1 to 66	Base/Friction Color Standard Rod Material Ø 0.24 in (6.1 mm) Belt Strength Temperature Range (continuous) Belt V (continuous) Gray/Black Nylon 1800 2678 34 to 150 1 to 66 2.60	Base/Friction Color Standard Rod Material Ø 0.24 in (6.1 mm) Belt Strength Temperature Range (continuous) Belt Weight Ib/ft kg/m °F °C Ib/ft² kg/m² Gray/Black Nylon 1800 2678 34 to 150 1 to 66 2.60 12.69	Base/Friction Color Standard Rod Material Ø 0.24 in (6.1 mm) Belt Strength Temperature Range (continuous) Belt Weight (continuous) Friction Top Hardness Gray/Black Nylon 1800 2678 34 to 150 1 to 66 2.60 12.69 50 Shore A	Base/Friction Color Standard Rod Material Ø 0.24 in (6.1 mm) Belt Strength Temperature Range (continuous) Belt Weight Friction Top Hardness Age Accept Accept FDA (USA) Gray/Black Nylon 1800 2678 34 to 150 1 to 66 2.60 12.69 50 Shore A a			

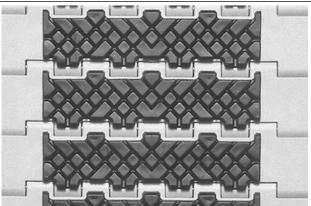
- - Fully compliant
- a FDA Compliant with Restriction: Do not use in direct contact with fatty foods.
- b European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.
- c EU compliant with Restriction: Do not use in direct contact with fatty foods.

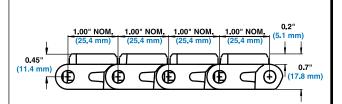


3.25 in l	Mold to W	/idth Flat			
	in	mm			
Pitch	1.00	25.4			
Molded Width	3.25	83			
Opening Sizes (approx.)	-	-			
Open Area	09	%			
Hinge Style	Clos	sed			
Drive Method	Center/hinge-driven				
Rod Retention; Rod Type	Slidelox; unheaded				

- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Fully flush edges.
- Available in blue acetal with black rubber.
- Tracking tabs provide lateral tracking.
- Robust design offers excellent belt and sprocket durability, especially in tough, material-handling applications.
- Not recommended for product accumulation conditions. Contact Intralox Sales Engineering for information about friction values between product and belt.
- Temperature, environmental conditions, and product characteristics affect the maximum degree of incline. Consider these factors when designing conveyor systems using these belts.
- One sprocket can be placed on the 3.25 in (83 mm) Mold To Width tabbed belt.
- · Sprockets are all plastic.
- Most sprockets feature a split design so shafts do not have to be removed for retrofits and changeovers.
- Width tolerances: +0.000/-0.020 in (+0.000/-0.500 mm).
- Indent for Friction Top surface: 0.5 in (12.7 mm).
- Available in 10 ft. (3 m) increments.

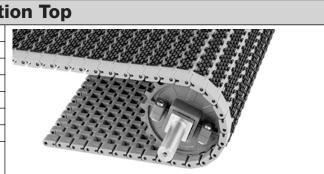
	Belt Data												
Base belt material	Base/friction color	Standard rod material	Belt strength		Temperature range (continuous)		Belt weight		Friction Top	Agency acceptabilit			
		Ø 0.24 in (6.1 mm)	lb	kg	°F	°C	lb/ft	kg/m	hardness	FDA (USA)	EU MC		
Acetal	Blue/Black	Nylon	700	318	-10 to 130	-23 to 54	0.94	1.40	54 Shore A	See note.1	See note.2		


¹ FDA Compliant with Restriction: Do not use in direct contact with fatty foods.

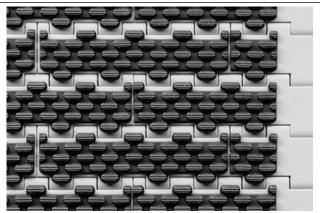

² European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.

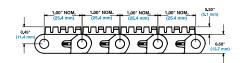
ı	Mold to W	/idth Squ		
	in	mm		
Pitch	1.00	25.4		
Molded Width	6	152		
Open Area	09	%		
Hinge Style	Clos	sed		
Drive Method	Center/hinge-driven			
Rod Retention; Rod Type	Slidelox; ι	unheaded		

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- · Fully flush edges.
- Available in gray polypropylene with black rubber.
- Slidelox are available in polypropylene or acetal.
- Robust design offers excellent belt and sprocket durability, especially in tough, material-handling applications.
- If a center-drive setup is used, it can be necessary to retain the belt laterally, by placing collars at the backbend roller, before the drive.
- Temperature, environmental conditions, and product characteristics affect the effective maximum degree of incline. Take these items into consideration when designing conveyor systems utilizing these belts.
- Sprockets are all plastic.
- Most sprockets feature a split design so shafts do not have to be removed for retrofits and changeovers.
- Up to three sprockets can be placed on the 6.0 in (152 mm) mold to width belt.
- Width tolerances: +0.000/-0.020 in (+0.000/-0.500 mm).
- Rubber indent: 1.0 in (25.4 mm).
- Available in 10 ft (3 m) increments.



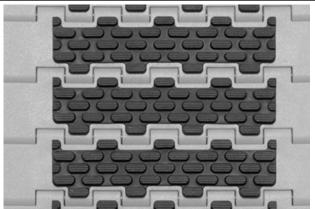
Belt Data											
Base Belt B	Base/Friction	Standard Rod Material Ø	Belt St	rength	Temperatu (contin	0	Belt \	Veight	Friction Top	Age Accep	,
Material		0.24 in (6.1 mm)	lb	kg	°F	°C	lb/ft	kg/m	Hardness	FDA (USA)	EU MC ^b
Polypropylene	Gray/Black	Nylon	800	386	34 to 150	1 to 66	1.15	1.71	50 Shore A	а	

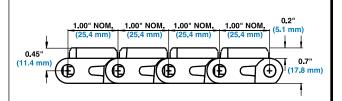

- - Fully compliant
- a FDA Compliant with Restriction: Do not use in direct contact with fatty foods.
- b European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.



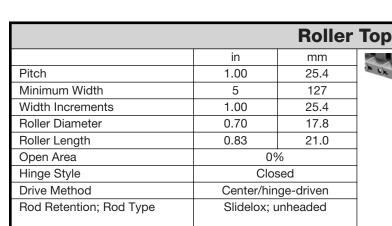
	O	val Frict
	in	mm
Pitch	1.00	25.4
Minimum Width	5	127
Width Increments	1.00	25.4
Open Area	09	%
Hinge Style	Clos	sed
Drive Method	Center/hin	ge-driven
Rod Retention; Rod Type	Slidelox; ι	ınheaded

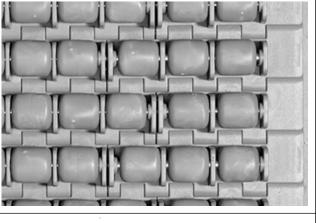
- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Fully flush edges.
- Available in gray polypropylene with black rubber.
- Slidelox are available in polypropylene or acetal.
- · Robust design offers excellent belt and sprocket durability, especially in tough, material-handling applications.
- If a center-drive setup is used, it can be necessary to retain the belt laterally, by placing collars at the backbend roller, before the drive.
- Temperature, environmental conditions, and product characteristics affect the maximum degree of incline. Consider these factors when designing conveyor systems using these belts.
- Sprockets are all plastic.
- Most sprockets feature a split design, so shafts do not have to be removed for retrofits and changeovers.
- Rubber indent: 1.0 in (25.4 mm).

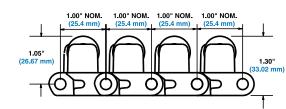

	Belt Data										
	Standard Rod Material Ø	Belt Strength		Temperature Range (continuous)		Belt Weight		Friction Top	Agency Acceptability		
Material	Color	0.24 in (6.1 mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	Hardness	FDA (USA)	EU MC ^b
Polypropylene	Gray/Black	Nylon	1800	2678	34 to 150	1 to 66	2.29	11.18	55 Shore A	а	

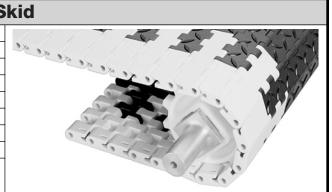

- Fully compliant
- a FDA Compliant with Restriction: Do not use in direct contact with fatty foods.
- b European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.

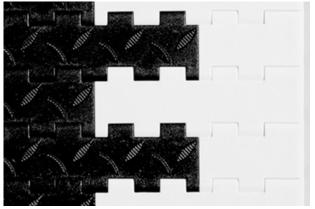
	Mold to	Width Ov		
	in	mm		
Pitch	1.00	25.4		
Molded Width	6	152		
Open Area	09	%		
Hinge Style	Clos	sed		
Drive Method	Center/hinge-driven			
Rod Retention; Rod Type	Slidelox; ι	ınheaded		

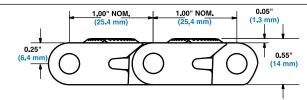

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- · Fully flush edges.
- Available in gray polypropylene with black rubber.
- Slidelox are available in polypropylene or acetal.
- Robust design offers excellent belt and sprocket durability, especially in tough, material-handling applications.
- If a center-drive setup is used, it can be necessary to retain the belt laterally, by placing collars at the backbend roller, before the drive.
- Temperature, environmental conditions, and product characteristics affect the maximum degree of incline.
 Consider these factors when designing conveyor systems using these belts.
- · Sprockets are all plastic.
- Most sprockets feature a split design, so shafts do not have to be removed for retrofits and changeovers.
- Up to three sprockets can be placed on the 6.0 in (152 mm) mold to width belt.
- Width tolerances: +0.000/-0.020 in (+0.000/-0.500 mm).
- Rubber indent: 1.0 in (25.4 mm).
- Available in 10 ft (3 m) increments.


	Belt Data										
	Standard Rod Material Ø	Belt Strength		Temperature Range (continuous)		I Relt Weight		Friction Top	Agency Acceptability		
Material	Color	0.24 in (6.1 mm)	lb	kg	°F	°C	lb/ft	kg/m	Hardness	FDA (USA)	EU MC ^b
Polypropylene	Gray/Black	Nylon	800	386	34 to 150	1 to 66	1.15	1.71	55 Shore A	а	


- - Fully compliant
- a FDA Compliant with Restriction: Do not use in direct contact with fatty foods.
- b European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.

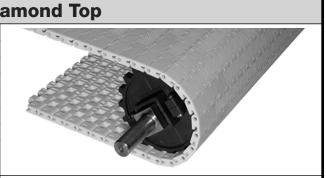

- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- · Flush edges.
- · Available in white or gray acetal.
- Stainless steel roller axle pins provide durability.
- Slidelox are available in polypropylene or acetal.
- Robust design offers excellent belt and sprocket durability.
- Allows low back-pressure accumulation for gentle product handling.
- 144 rollers per square foot of belt provide greater productto-roller contact.
- Back-up load is 5-10% of product weight.
- Roller spacing: 1 in (25.4 mm).
- Standard roller indent: 0.75 in (19 mm)

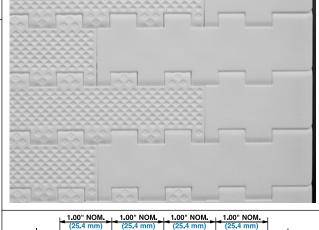


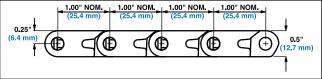

Belt Data							
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt strength		Temperat (contir	Belt w	/eight	
	0.24 III (0.1 11111)	lb/ft	lb/ft kg/m °F °C				kg/m²
Acetal	Nylon	2500	3720	-50 to 200	-46 to 93	5.83	28.47

		Non S
	in	mm
Pitch	1.00	25.4
Minimum Width	9	229
Width Increments	1.00	25.4
Opening Size (approx.)	-	-
Open Area	09	%
Hinge Style	Clos	sed
Drive Method	Center/hin	ige-driven
Rod Retention; Rod Type	Slidelox; ι	unheaded

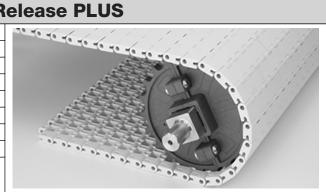
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- · Robust design offers excellent belt and sprocket durability.
- Edges have a Flat Top surface, without treads.
- Staggered yellow edges make it easy to distinguish the moving belt from the stationary floor.
- Diamond tread pattern provides a Non Skid walking surface to increase safety.
- Slidelox are available in polypropylene or acetal.
- Minimum nominal alternating edge indents: 2 in (51 mm) and 3 in (76 mm).
- 1.00 (25.4 mm) pitch accommodates small drive sprockets for low-profile people carriers.

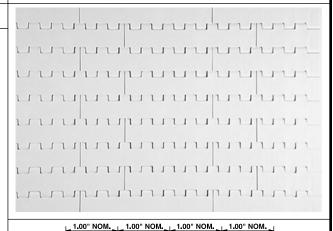


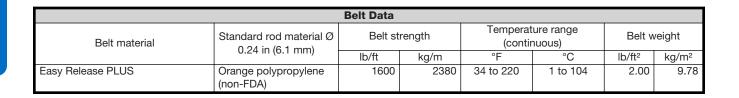

Belt Data							
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	9			ure range nuous)	Belt weight	
	0.24 1 (0.1 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
HSEC acetal	Nylon	1875	2790	-50 to 200	-46 to 93	2.78	13.57
Polypropylene	Nylon	1800	2678	34 to 220	1 to 104	2.32	11.33


	J	L
(5
	\succ	<

	Emb	edded Di		
	in	mm		
Pitch	1.00	25.4		
Minimum Width	12.0	304.8		
Opening Sizes (approx.)	-	-		
Open Area	09	%		
Hinge Style	Clos	sed		
Drive Method	Center/hinge-driven			
Rod Retention; Rod Type	Slidelox; ι	ınheaded		

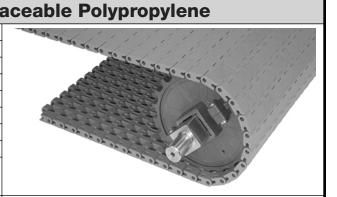

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Smooth, closed surface with fully flush edges.
- Robust design offers excellent belt and sprocket durability.
- Most sprockets feature a split design, so shafts do not have to be removed for retrofits and changeovers.
- Split sprockets are designed with thick, lug-style teeth for excellent durability and wear life.
- Minimum nominal alternating edge indents: 3 in (76 mm) and 4 in (102 mm).

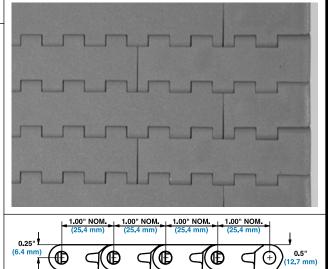



Belt Data								
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt strength		•	ure range nuous)	Belt w	reight	
	0.24 111 (0.1 11111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	
Polypropylene	Nylon	1800	2678	34 to 220	1 to 104	1.70	8.30	
	•							

	Flat To	p Easy R
	in	mm
Pitch	1.00	25.4
Minimum Width	5	127
Width Increments	1.00	25.4
Opening Size (approximate)	-	-
Open Area	09	%
Hinge Style	Clos	sed
Drive Method	Center/hin	ge-driven
Rod Retention; Rod Type	Slidelox; u	ınheaded

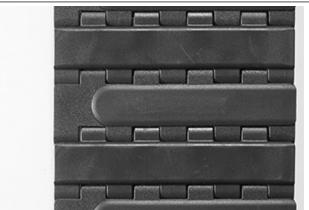
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Smooth, closed surface with fully flush edges.
- Easy Release PLUS material resists rubber adhesion and has minimal dimensional expansion when exposed to oil and heat.
- Slidelox are polypropylene.
- Provides excellent belt and sprocket durability, especially in tough-material handling applications.
- Sprockets feature a split design, so shafts do not have to be removed for retrofits and changeovers.
- Split sprockets are designed with thick, lug-style teeth for excellent durability and wear life.

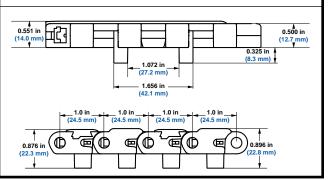



0.25"

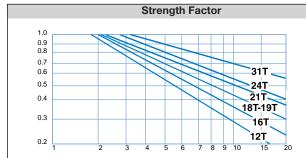
Flat Top	Easy Re	lease Tra
	in	mm
Pitch	1.00	25.4
Minimum Width	5	127
Width Increments	1.00	25.4
Opening Size (approximate)	-	-
Open Area	09	%
Hinge Style	Clos	sed
Drive Method	Center/hin	ge-driven
Rod Retention; Rod Type	Slidelox; ι	ınheaded

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Smooth, closed surface with fully flush edges.
- Slidelox are detectable polypropylene.
- Robust design offers excellent belt and sprocket durability, especially in tough glass applications.
- Sprockets are all plastic, with large, lug-style teeth for excellent durability and wear life.
- Most sprockets feature a split design, so shafts do not have to be removed for retrofits and changeovers.


		Belt Data					
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt st	rength		ure range nuous)	Belt w	veight
	0.24 1 (6.1 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
Easy Release Traceable PP	Orange polypropylene (non-FDA)	1200	1790	34 to 220	1 to 104	1.86	9.08

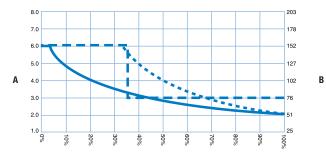

	Pro	oTrax [™] w
	in	mm
Pitch	1.00	25.4
Molded Widths	4.5	114.3
Opening Size (approx.)	-	-
Open Area	09	%
Hinge Style	Clos	sed
Drive Method	Center/hin	ge-driven
Rod Retention; Rod Type	Slidelox; ι	ınheaded

- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- · Powerful magnets are embedded in the belts.
- Tracking tabs prevent lateral movement.
- Slidelox provide rod and cap retention.


- Standard configuration consists of magnetic modules and S1400 Raised Flat Top modules alternating every other row to maximize wear resistance.
- · Ideal for incline, decline, vertical switch, pan indexing, and metering applications.
- Only needs one drive sprocket and one idle sprocket per belt strand.
- Both strands of the belt should be installed so that they run in the same direction.
- Determine belt spacing based on maximum surface area contact with the bottom surface of the conveyed product.
- Sprockets are all plastic with stainless steel fasteners and large, lug-style teeth for excellent durability and wear life.
- Most sprockets feature a split design so shafts do not have to be removed for retrofits and changeovers.
- Tabs fit into a straight track style carryway with 1.75 in (44.5 mm) spacing.

		Belt Data					
Belt material	Standard rod material Ø 0.18 in (4.6 mm)	Straight be	elt strength		ure range nuous)	Belt w	eight /
	0.16 111 (4.6 111111)	lb	kg	°F	°C	lb/ft	kg/m
Acetal	Nylon	550	250	-50 to 200	-46 to 93	1.46	2.18
HHR nylon	Nylon	550	250	-50 to 310	-46 to 154	1.296	1.95

		Sprocket a	nd Support Quantity Refere	nce
Belt Wi	dth Range ¹	Minimum Number of	W	earstrips
in	mm	Sprockets Per Shaft ²	Carryway	Returnway ³
5	127	2	2	2
6	152	2	2	2
7	178	2	3	2
8	203	2	3	2
10	254	2	3	2
12	305	3	3	2
14	356	3	4	3
16	406	3	4	3
18	457	3	4	3
20	508	5	5	3
24	610	5	5	3
30	762	5	6	4
32	813	7	7	4
36	914	7	7	4
42	1067	7	8	5
48	1219	9	9	5
54	1372	9	10	6
60	1524	11	11	6
72	1829	12	13	7
84	2134	15	15	8
96	2438	17	17	9
For other	widths, use an o	odd number of sprockets at	Maximum 6 in (152 mm) centerline	Maximum 12 in (305 mm) centerline
Maxin	num 6 in (152 m	nm) centerline spacing.4	spacing	spacing


Speed/length ratio (V/L)

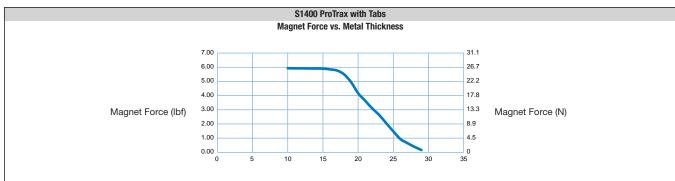
Divide belt speed (V) by the shaft centerline distance (L). Strength Factor is found at intersection of the speed/length ratio and the appropriate sprocket line. See Belt Selection Instructions for more information.

V = ft/min (m/min); T = number of teeth; L = ft (m)

Sprocket Spacing as a Function of Belt Strength Utilized

SERIES 1400

Percentage of allowable belt strength utilized


- A Sprocket spacing, in Sprocket spacing, mm
- Long dashed line: Flush Grid Short dashed line: Round bores Solid line: All other styles

¹ If belt width exceeds a number listed in the table, see the sprocket and support material minimums for the next larger width range. Belts are available in 1.00 in (25.4 mm) increments beginning with minimum width of 5 in (127 mm). If the actual width is critical, contact Intralox Customer Service.

² This number is a minimum. Heavy-load applications can require additional sprockets.

³ For Friction Top applications, use caution and contact Intralox Customer Service.

⁴ Lock down the center sprocket. With only two sprockets, fix the sprocket on the drive journal side only. For lockdown location, see Retainer Rings/Center Sprocket Offset. For Flush Grid, see Locked Sprocket Location chart in the Installation Instruction Guidelines or call Intralox Customer Service.

Metal thickness (steel gauge)

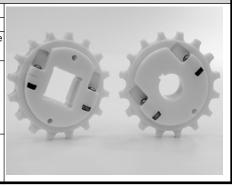
Note: Magnet force shows is typical for an aluminized steel product with a flat surface and maximum surface area contact. Results can vary, based on material and surface texture.

							Molde	d Spro	cket¹	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable B	ore Size	S
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in	in	mm	mm
12	3.9	99	3.9	99	1.5	38	-	1.5	-	40
(3.41%)										
15	4.9	124	4.9	124	1.5	38		2.5		60
(2.19%)										
18	5.7	145	5.8	148	1.5	38	2	2.5	30,	60
(1.52%)									40, 50	
24	7.7	196	7.8	198	1.5	38		2.5		60
(0.86%)										

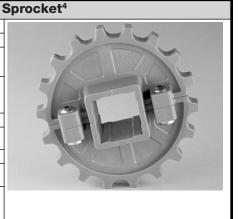
						Glas	s Filled N	lylon :	Split Spr	ocket²	2
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Ava	ailable B	ore Sizes		
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.		Metri)	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round ³	Square	Round ³	Square	
Action)	in	mm	in	mm	in	mm					
16	5.1	130	5.2	132	2.0	51	1 to 2 in	1.5	25 to 50	40	
(1.92%)							1/16		in 5		ŧ
							increments		increments		1
18	5.7	145	5.8	148	2.0	51	1 to 2 in	1.5	25 to 50	40	
(1.52%)							1/16	2.5	in 5	60	
							increments		increments		
21	6.7	170	6.8	172	2.0	51	1 to 2 in	1.5	25 to 50	40	
(1.12%)							1/16	2.5	in 5	60	
							increments ⁴		increments		

¹ Contact Intralox Customer Service for lead times.

² Contact Intralox Customer Service for lead times.


³ Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

⁴ Tight fit round bores are available in 1-1/4, 1-3/16, 1-1/2, and 1-7/16 in



Max	cimum	Belt Ra	iting fo	r Glas	s Filled	_	Round ze Ran		Split S _l	procke	ts Based	d on Ro	ound B	ore
No. of	Nom.	Pitch	1 in - 1-	3/16 in	1-1/4	in -	1-7/10	6 in -	1-13/16 i	n - 2 in	25 mm - 3	35 mm	40 mm	า - 50
Teeth	Diam	eter			1-3/8 in		1-3/4 in						mr	m
	in	mm	lb/ft	kg/m	lb/ft	kg/m	lb/ft	kg/m	lb/ft	kg/m	lb/ft	kg/m	lb/ft	kg/m
16	5.1	130	1500	2232	1740	2589	2100	3125	2160	3214	1140	1697	2160	3214
18	5.7	145	1800	2679	2040	3036	2400	3572	3240	4822	1440	2143	2460	3661
21	6.7	170	1350	2009	1650	2455	2100	3125	3000	4464	1050	1563	2400	3572

							Nylon FD	A Split	t Sprock	et²	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Av	ailable B	ore Sizes		134
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.		Metri	С	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round in ³	Square	Round	Square	
Action)	in	mm	in	mm	in	mm		in	mm ²	mm	And
12	3.9	99	3.9	99	0.75	19	1.25	1.5			
(3.41%)										40	
16	5.1	130	5.2	132	1.5	38	1.25	1.5	30	40	
(1.92%)							1.5				400
18	5.7	145	5.8	148	1.5	38	1.25	1.5	25, 30,	40	
(1.52%)									40		

				Endu	ıralox	Polypr	ropylen	e Com	posite	Split :
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A۱	vailable B	ore Size	S
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in ⁵	in	mm ²	mm
16	5.1	130	5.2	132	2.0	51		1.5		40
(1.92%)										
18	5.7	145	5.8	148	2.0	51		1.5		40
(1.52%)								2.5		60
21	6.7	170	6.8	172	2.0	51		1.5		40
(1.12%)								2.5		
31	9.9	251	10.1	257	2.0	51		3.5		
(0.51%)										

					Polyu	ırethaı	ne Con	nposite	Split	Sproc
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	ore Size	S
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Ме	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in	in	mm	mm
31	9.9	251	10.1	257	1.50	38		3.5		
(0.51%)					1.67	44		2.57		

¹ The belt rating based on round bore sprocket size is used to determine sprocket spacing as a function of belt strength utilized. It can also be used for all other calculations. However, if the rating for the belt material and belt style is lower then the belt rating based on the round bore sprocket size, then the lower rating must be used for all calculations other than sprocket spacing.

² Contact Customer Service for lead times.

³ U.S. key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

⁴ Contact Customer Service for lead times.

⁵ Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

⁶ Contact Customer Service for lead times.

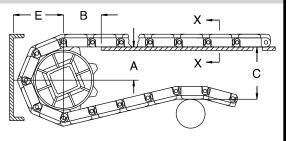
 $^{^{\}rm 7}$ The 2.5" square bore is created by using a bore adapter in the 3.5" square bore sprocket.

Flat Top Base Flights (Streamlin				
Available flight Height		Available Materials		
in	mm	Available ivialerials		
0.43	11	Easy Release Traceable polypropylene		

- Flight is smooth (streamline) on both sides.
- Each flight rises out of the center of its supporting module, molded as a part. No fasteners are required.
- The minimum indent is a function of belt width. Contact Intralox Customer Service for valid indent increments.

Self-Clearing Finger					
Available Width		No. of	Available Materials		
in	mm	Fingers	Available iviaterials		
6	152	18	Glass-filled thermoplastic		
Consists of a finger transfer plate and a transfer edge belt that are					

- Consists of a finger transfer plate and a transfer edge belt that are designed to work together.
- Molded with robust tracking tabs for belt support in heavy sideloading conditions.
- Flat, smooth top surface provides excellent lateral movement of containers.
- Fully flush edges, headed rod retention system, and nylon rods for superior wear resistance.
- Eliminates the need for a sweeper bar, a pusher arm, or wide transfer plates. Transfers are smooth and 100% self-clearing, making right angle transfers possible for all container types.
- Ideal for warmer/cooler applications with frequent product changeovers.
- Bi-directional system allows same transfer belt use for both lefthand and right-hand transfers.
- Compatible with any series and style of Intralox belt on the discharge and infeed conveyors.
- Capable of transferring product to and from Series 400, Series 1200, and Series 1900 Raised Rib belts.
- Robust design for durability in tough, glass applications.
- Easily installed and secured to mounting plates of any thickness with stainless steel bolts and oval washers that allow movement with belt expansion and contraction.
- Stainless steel hardware is sold separately.


Transfer Plates¹

Conveyor Frame Dimensions

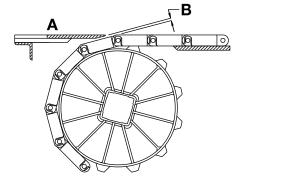
Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see *Basic Conveyor Frame Requirements*.

± 0.031 in (1 mm) ± 0.125 in (3 mm) c ± (max.) E ± (min)

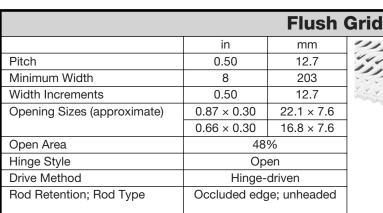
SERIES 1400


Sp	rocket De	scription	Α			3	(E	
Pitch D	Diameter	No Tooth	Range (Bottor	n to Top)	i		:		:	
in	mm	No. Teeth	in	mm	in	mm	in	mm	in	mm
		;	Series 1400 Embedde	d Diamond Top	, Flat Top,	Flush Gri	d			
3.9	99	12	1.62-1.68	41-43	1.80	46	3.86	98	2.24	57
4.9	124	15	2.10-2.15	53-55	2.06	52	4.81	122	2.72	69
5.1	130	16	2.26-2.32	57-59	2.11	54	5.13	130	2.88	73
5.7	145	18	2.59-2.63	66-67	2.22	56	5.76	146	3.19	81
6.7	170	21	3.07-3.10	78-79	2.44	62	6.71	170	3.75	95
7.7	196	24	3.55-3.58	90-91	2.64	67	7.66	195	4.14	105
9.9	251	31	4.67	119	3.07	78	9.88	251	5.25	133
		Serie	s 1400 Flat Friction To		n Top, Squ	are Friction	n Top			
3.9	99	12	1.62-1.68	41-43	1.80	46	4.06	103	2.44	62
4.9	124	15	2.10-2.15	53-55	2.06	52	5.01	127	2.92	74
5.1	130	16	2.26-2.31	57-59	2.11	54	5.33	135	3.08	78
5.7	147	18	2.59-2.63	66-67	2.22	56	5.96	151	3.39	86
6.7	170	21	3.07-3.10	78-79	2.44	62	6.91	176	3.87	98
7.7	196	24	3.55-3.58	90-91	2.64	67	7.86	200	4.34	110
9.9	251	31	4.67	119	3.07	78	10.08	256	5.45	138
	•			es 1400 Roller	Тор	•	•		•	
3.9	99	12	1.62-1.68	41-43	1.80	46	4.66	118	3.04	77
4.9	124	15	2.10-2.15	53-55	2.06	52	5.61	142	3.52	89
5.1	130	16	2.26-2.31	57-59	2.11	54	5.93	151	3.68	93
5.7	145	18	2.59-2.63	66-67	2.22	56	6.56	167	3.99	101
6.7	170	21	3.07-3.10	78-79	2.44	62	7.51	191	4.47	113
7.7	196	24	3.55-3.58	90-91	2.64	67	8.46	215	4.94	125
9.9	251	31	4.67	119	3.07	78	10.68	271	6.05	154
			Series 1	400 Non Skid,	ProTrax				•	
3.9	99	12	1.62-1.68	41-43	1.80	46	3.91	99	2.29	58
4.9	124	15	2.05-2.10	52-53	2.06	52	4.86	123	2.77	70
5.1	130	16	2.26-2.31	57-59	2.11	54	5.18	132	2.93	74
5.7	145	18	2.59-2.63	66-67	2.22	56	5.81	148	3.24	82
6.7	170	21	3.07-3.10	78-79	2.44	62	6.76	172	3.72	94
7.7	196	24	3.55-3.58	90-91	2.64	67	7.71	196	4.19	106
9.9	251	31	4.67	119	3.07	78	9.93	252	5.30	135

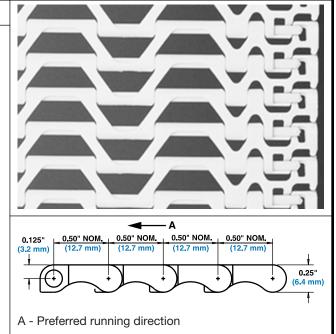
Dead Plate Gap

A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.

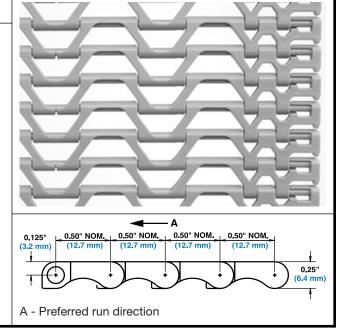

Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.

A Top surface of dead plate


B Dead plate gap

	Sprocket Description	Gap			
Pitch D	iameter	No. Teeth	in	mm	
in	mm	No. reetii	""	111111	
3.9	99	12	0.066	1.7	
4.9	124	15	0.053	1.3	
5.1	130	16	0.050	1.3	
5.7	145	18	0.044	1.1	
6.7	170	21	0.038	1.0	
7.7	196	24	0.033	0.8	
9.9	251	31	0.025	0.6	

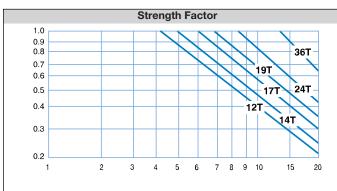
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Smooth upper surface with fully flush edges.
- · The detectable material has surface resistivity per ASTM D257 of 545 Ohms per square.
- Rod diameter: 0.140 in (3.6 mm).
- Designed for a 0.5 in (12.7 mm) diameter nosebar.



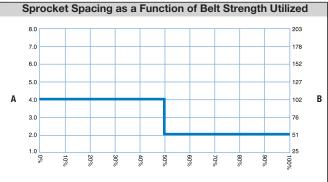
		Belt Data					
Belt material	Standard rod material Ø 0.140 in (3.6 mm)	Belt st	rength		ture range nuous)	Belt weight	
	0.140 III (3.0 11111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
Polypropylene	Polypropylene	125	186	34 to 220	1 to 104	0.44	2.12
Polypropylene	Acetal	150	223	34 to 200	1 to 93	0.51	2.40
HR nylon	Nylon	175	260	-50 to 240	-46 to 116	0.58	2.83
HHR nylon	HHR nylon	175	260	-50 to 310	-46 to 154	0.58	2.83
Acetal	Acetal	240	357	-50 to 200	-46 to 93	0.73	3.56
Detectable acetal	Acetal	200	298	-50 to 200	-46 to 93	0.69	3.35
Detectable polypropylene A22	Acetal	80	119	0 to 150	-18 to 66	0.57	2.78
X-Ray Detectable Acetal ¹	Acetal	240	357	-50 to 200	-46 to 93	0.78	3.66

¹ Designed specifically for detection by X-ray machines.

	Flush Gr	id with C	ontained Edge
	in	mm	555999555
Pitch	0.50	12.7	333000
Minimum Width	8	203	China Con Star
Width Increments	2.0	50.8	The state of the s
Minimum Opening Size	0.87 × 0.30	22.1 × 7.6	
(approx.)			2000
Maximum Opening Size	0.66×0.30	16.8 × 7.6	250000
(approx.)			
Open Area	48	1%	
Hinge Style	Op	en	
Drive Method	Hinge-	-driven	
Rod Retention; Rod Type	Occluded ed	ge; unheaded	
·			


- Always check with Customer Service for precise belt width measurement and stock status before designing a conveyor or ordering a belt.
- Smooth upper surface with fully flush edges.
- Recessed rod retention feature provides superior rod containment.
- Available in 2 in (50.8 mm) increments.
- Designed for a 0.5 in (12.7 mm) diameter nosebar.
- Rod diameter: 0.140 in (3.6 mm).

Belt Data										
Belt material	Standard rod material Ø 0.140 in (3.6 mm)	Belt st	rength	Temperat (contir	ure range nuous)	Belt weight				
	0.140 III (3.0 11111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²			
HR nylon	Nylon	175	260	-50 to 240	-46 to 116	0.58	2.83			


Belt Wic	dth Range ¹	Minimum Number of	W€	earstrips
in	mm	Sprockets Per Shaft ²	Carryway	Returnway
8	203	3	3	2
10	254	3	3	2
12	305	3	3	2
14	356	3	4	3
16	406	5	4	3
18	457	5	4	3
20	508	5	5	3
22	559	5	5	3
24	610	7	5	3
26	660	7	6	4
28	711	7	6	4
30	762	7	6	4
32	813	9	7	4
34	864	9	7	4
36	914	9	7	4
38	965	9	8	5
40	1016	11	8	5
42	1067	11	8	5
44	1118	11	9	5
46	1168	11	9	5
48	1219	13	9	5
50	1270	13	10	6
52	1321	13	10	6
54	1372	13	10	6
56	1422	15	11	6
58	1473	15	11	6
60	1524	15	11	6
62	1575	15	12	7
64	1626	17	12	7
		odd number of sprockets at nm) centerline spacing. ³	Maximum 6 in (152 mm) centerline spacing	Maximum 12 in (305 mm) centerline spacing

Speed/length ratio (V/L)

Divide belt speed (V) by the shaft centerline distance (L). Strength Factor is found at intersection of the speed/length ratio and the appropriate sprocket line. See Belt Selection Instructions for more information.

V = ft/min (m/min); T = number of teeth; L = ft (m)

Percentage of allowable belt strength utilized

- A Sprocket spacing, in
- B Sprocket spacing, mm

¹ Belts are available in 0.50 in (12.7 mm) increments beginning with 8 in (203 mm). If the actual width is critical, contact Intralox Customer Service.

² This number is a minimum. Heavy-load applications can require additional sprockets.

³ Lock down the center sprocket. With only two sprockets, fix the sprocket on the drive journal side only. See Locked Sprocket Location chart in the Installation Instruction Guidelines or contact Intralox Customer Service for lockdown location.

							Molde	d Spro	cket¹		
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.		vailable E	ore Size	S	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.			tric	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square		Square	
Action)	in	mm	in	mm	in	mm	in ²	in	mm ²	mm	
10	1.6	41	1.8	46	0.65	17		5/8			
(4.89%)											
12	1.9	48	2.1	53	0.65	17	1	1.0	25		
(3.41%)											4
14	2.3	58	2.4	61	0.75	19	3/4, 1,	1.0	25		7
(2.51%)							1-3/16,				
47	0.7	00	0.0	70	0.75	10	1-1/4		0.5		, , , , ,
17	2.7	69	2.9	73	0.75	19	3/4, 1,		25		
(1.70%)							1-3/16,				
							1-1/4,				
							1-3/8				
19	3.1	79	3.2	82	0.75	19	1,				
(1.36%)							1-3/8				
24	3.8	97	4.0	101	0.75	19	1	1.5	25	40	
(0.86%)											
36	5.7	145	5.9	150	0.75	19	1	1.5		40	
(0.38%)											

	Nylon FDA Split Sprockets ³										
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable B	ore Size	S	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	
Action)	in	mm	in	mm	in	mm	in ⁴	in	mm ⁴	mm	
24	3.8	97	4.0	101	1.5	38				40	
(0.86%)											
36	5.7	145	5.9	150	1.5	38				40	
(0.38%)											
, ,											

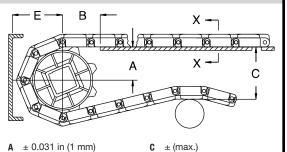
		Flush Grid Base Fligh					
Available F	light Height	Available Materials					
in	mm	Available Waterials					
1	25	Acetal, HR nylon					
Facilities di caracteria de la constanta de la							

- Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.
- Flush Grid flight is smooth (streamlined) on both sides.
- Flights can be cut down to custom heights. Minimum height: 0.25 in (6.4 mm).
- Minimum indent is a function of belt width. Minimum indent range: 3 in (76 mm) to 3.75 in (95 mm).

¹ Contact Intralox Customer Service for lead times.

² U.S. key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

³ Contact Intralox Customer Service for lead times.


⁴ U.S. key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

Conveyor Frame Dimensions

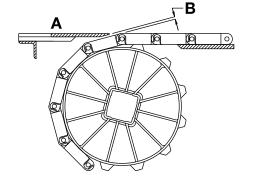
Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in anv design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see Basic Conveyor Frame Requirements.

± 0.031 in (1 mm) ± 0.125 in (3 mm)

± (min)


Sp	Sprocket Description		Α		В		С		E	
Pitch D	Diameter	No. Teeth	No. Tooth Range (Bottom to Top)		in	mm	in	mm	in	mm
in	mm	No. reetii	in	mm	""	111111	""		""	mm
Series 1500 Flush Grid, Flush Grid with Contained Edge										
1.6	41	10	0.64-0.68	16-17	1.13	29	1.62	41	1.00	25
1.9	48	12	0.81-0.84	21	1.24	31	1.93	49	1.15	29
2.3	58	14	0.97-1.00	25	1.34	34	2.25	57	1.31	33
2.7	69	17	1.21-1.24	31	1.49	38	2.72	69	1.55	39
3.1	79	19	1.37-1.39	35	1.59	40	3.04	77	1.71	43
3.8	97	24	1.77-1.79	45	1.76	45	3.83	97	2.10	53
5.7	145	36	2.73-2.74	69-70	2.71	55	5.74	146	3.06	78

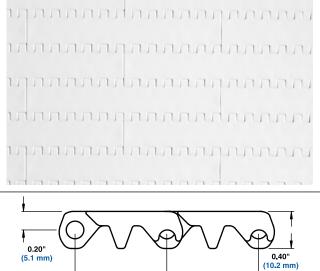
Dead Plate Gap

A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.

- A Top surface of dead plate
- B Dead plate gap


	Sprocket Description	Gap			
Pitch D	iameter	No. Teeth	in	mm	
in	mm	No. reeur	""	mm	
1.6	41	10	0.040	1.0	
1.9	48	12	0.033	0.8	
2.3	58	14	0.028	0.7	
2.7	69	17	0.023	0.6	
3.1	79	19	0.021	0.5	
3.8	97	24	0.017	0.4	
5.7	145	36	0.011	0.3	

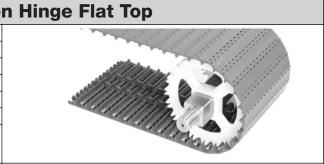
	Op	en Hinge	e Flat Top
	in	mm	3 5 5 5 5 2 5 N
Pitch (nominal)	1.00	25.4	With E E E E E E S' N'
Minimum Width	5	127	
Width Increments	0.50	12.7	
Opening Size (approx.)	_	_	
Open Area			A SIL
Hinge Style	Ol	oen	
Drive Method	Cente	r-driven	
Rod Retention; Rod Type	Occluded ed	lge; unheaded	The State of the s
			3 CRES
Produc	t Notes		
Contact Intralox for precis stock status before design			17777777777777
belt.	iiig cquipilicite	or ordering a	
Smooth, closed upper surface	ce with fully flush	n edges.	INTULTULTULTULT
Fully sculpted and radius co	•	J	
 No pockets or sharp corners 	to catch and ho	old debris.	ιηππππππππππηπππ
 Cam-link designed hinges - 			
area as belt goes around the			rynnuuuluuuuuuu
Intralox feature allows unsur	passed cleaning	access to this	
area.	عا درامه و طعل ۵۵۵	ar on the	ιηπηπηπηπηπηπημη
 Like Series 800 and Series 1 	ale water and de		

•	Like Series 800 and Series 1800, the drive bar on the
	underside of this belt channels water and debris to the
	outside of the belt for easier, faster cleanup. Drive bar
	effectiveness is proven both in-house and in field tests.
•	No-Cling flights are available

- Standard flight height: 4 in (102 mm). Contact Intralox Customer service for information on custom heights.

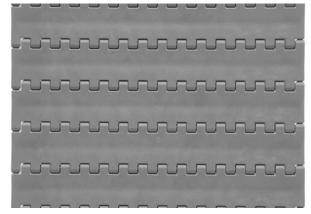
1.00" NOM. (25.4 mm)

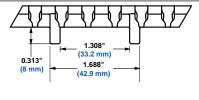
1.00" NOM. (25.4 mm)


Belt Data								
Belt material	Standard rod material Ø 0.18 in (4.6 mm)	Belt strength		Temperature range (continuous)		Belt weight		
		lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	1.05	5.13	
Polyethylene	Polyethylene	350	520	-50 to 150	-46 to 66	1.10	5.37	
Acetal	Polypropylene	1400	2100	34 to 200	1 to 93	1.58	7.71	
Acetal	Polyethylene ¹	1000	1490	-50 to 150	-46 to 66	1.58	7.71	
Hi-Temp	Hi-Temp	1000	1488	70 to 400	21 to 204	1.54	7.52	
X-Ray Detectable Acetal ²	Blue polyethylene	1000	1490	-50 to 150	-46 to 66	1.915	9.35	

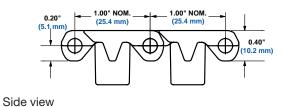
¹ Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.

² Designed specifically for detection by X-ray machines.

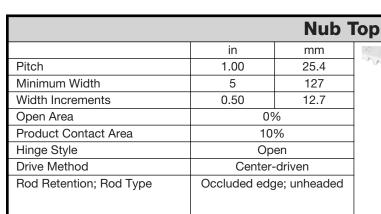

	Mold to W	idth Ope		
	in	mm		
Pitch	1.00	25.4		
Molded Width	7.5	190.5		
Open Area	09	%		
Hinge Style	Ор	en		
Drive Method	Center-	-driven		
Rod Retention; Rod Type	Snap-lock; headed			



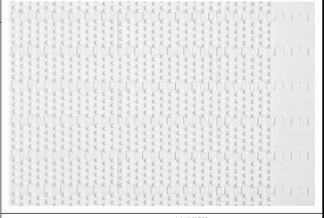
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Smooth, closed upper surface with fully flush edges.
- Tracking tabs provide lateral tracking.

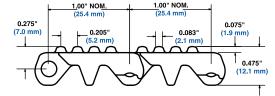

SERIES 1600

- Uses recessed rods.
- Available in 10 ft (3 m) increments.
- Do not use with sprockets smaller than a 3.9 in (99 mm) diameter (12 tooth) sprocket.

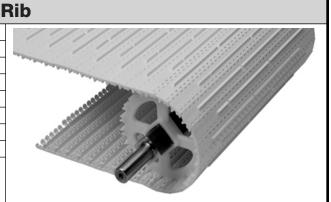


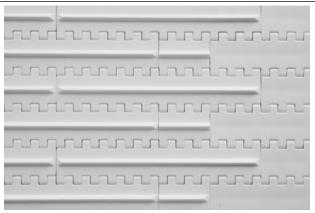
Front view

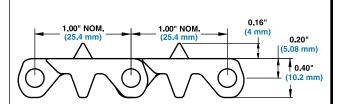



Belt Data							
Belt material	Standard rod material Ø 0.18 in (4.6 mm)	Belt strength		Temperature range (continuous)		Belt weight	
		lb	kg	°F	°C	lb/ft	kg/m
Acetal	Polyethylene	625	283	-50 to 150	-46 to 66	1.02	1.52

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Closed upper surface with fully flush edges.
- Not recommended for product accumulation conditions. Contact Intralox Sales Engineering for information about friction values between product and belt.
- Standard flights available in polypropylene, polyethylene, and acetal. Flights are molded as part of the belt, and can be cut to any size.
- Recommended for products large enough to span the distance between the nubs [0.250 in (6.35 mm)].
- Standard nub indent: 1.3 in (33.0 mm).
- Flight height: 4 in (102 mm).

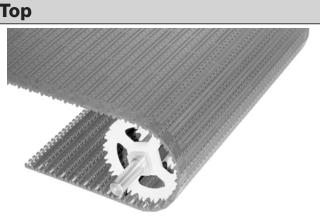


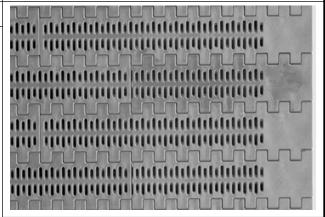

Belt Data									
Belt Material	Standard Rod Material Ø 0.18 in (4.6 mm)	Belt Strength		Temperature Range (continuous)		Belt Weight			
	9 0.18 111 (4.8 111111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²		
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	1.13	5.52		
Polyethylene	Polyethylene	350	520	-50 to 150	-46 to 66	1.18	5.76		
Acetal	Polypropylene	1400	2100	34 to 200	1 to 93	1.74	8.49		
Acetal	Polyethylene ¹	1000	1490	-50 to 150	-46 to 66	1.74	8.49		
X-Ray Detectable Acetal	X-Ray Detectable	1400	2083	-50 to 200	-46 to 93	2.01	9.81		
	Acetal								

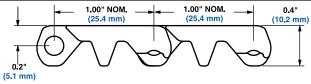

¹ Polyethylene rods can be used in cold applications when impacts or sudden starts/stops occur. Please note lower rating.

		Mini		
	in	mm		
Pitch (nominal)	1.00	25.4		
Minimum Width	5	127		
Width Increments	0.50	12.7		
Opening Size (approx.)	_	_		
Open Area	09	%		
Hinge Style	Ор	en		
Drive Method	Center-driven			
Rod Retention; Rod Type	Occluded edge; unheaded			

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Closed upper surface with fully flush edges.
- Fully sculpted and radiused corners with no pockets or sharp corners to catch and hold debris.
- Cam-link hinges provide easy cleaning with greater hinge and rod exposure as the belt moves around the sprockets.
- Like Series 800 and Series 1800, the drive bar on the underside of this belt channels water and debris to the outside of the belt for easier, faster cleanup. Drive bar effectiveness is proven both in-house and in field tests.
- No-Cling flights are available.
- Standard flight height: 4 in (102 mm). Flights can be cut to custom heights.
- 0.16 in (4 mm) Mini Rib on surface accommodates gradual inclines and declines. Not recommended for product accumulation conditions.
- Minimum nominal alternating edge indents: 1.5 in (38 mm) and 2 in (51 mm).

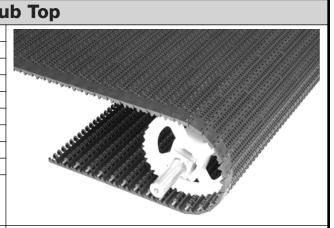


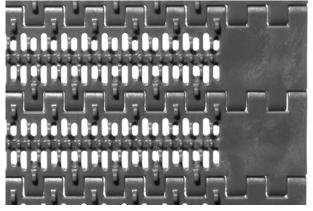

Belt Data								
Belt material	Standard rod material Ø 0.18 in (4.6 mm)	Belt strength		Temperature range (continuous)		Belt weight		
	0.16 (11 (4.6 11111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	1.135	5.54	
Acetal	Polypropylene	1400	2100	34 to 200	1 to 93	1.705	8.32	

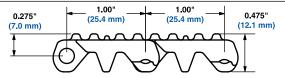


		Mesh ⁻
	in	mm
Pitch	1.00	25.4
Minimum Width	5	127
Width Increments	0.50	12.7
Min. Opening Size (approx.)	0.06 x 0.12	1.5 x 3.0
Max. Opening Size (approx.)	0.06 x 0.20	1.5 x 5.1
Open Area	16	%
Hinge Style	Op	en
Drive Method	Center	-driven
Rod Retention; Rod Type	Occluded ed	ge; unheaded

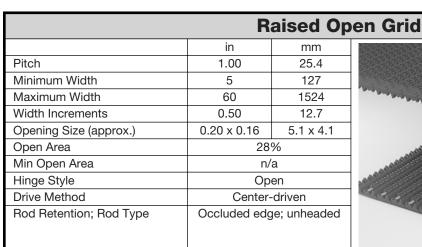
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Fully sculpted and radiused corners with no pockets or sharp corners to catch and hold debris.
- Cam-link hinges provide easy cleaning with greater hinge and rod exposure as the belt moves around the sprockets.
- Like Series 800 and Series 1800, the drive bar on the underside of this belt channels water and debris to the outside of the belt for easier, faster cleanup. Drive bar effectiveness is proven both in-house and in field tests.
- No-Cling flights are available.
- Standard Mesh Top indent: 1.0 in (25.4 mm).
- Standard flight height: 4 in (102 mm). Flights can be cut to custom heights.

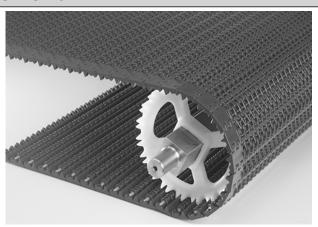


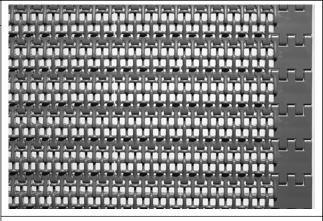

Belt Data									
Belt material	Standard rod material Ø 0.18 in (4.6 mm)	Belt strength		Temperature range (continuous)		Belt weight			
		lb/ft	kg/m	°F	°C	lb/ft²	kg/m²		
Acetal	Polypropylene	1200	1780	34 to 200	1 to 93	1.40	6.84		
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.94	4.59		
Low Moisture Abrasion Resistant	HR nylon	1100	1637	0 to 212	-18 to 100	1.18	5.76		

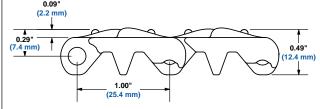


		Mesh Nu		
	in	mm		
Pitch	1.00	25.4		
Minimum Width	5	127		
Width Increments	0.50	12.7		
Min. Opening Size (approx.)	0.06 x 0.12	1.5 x 3.0		
Max. Opening Size (approx.)	0.06 x 0.20	1.5 x 5.1		
Open Area	16	%		
Hinge Style	Op	en		
Drive Method	Center-driven			
Rod Retention; Rod Type	Occluded edg	ge; unheaded		

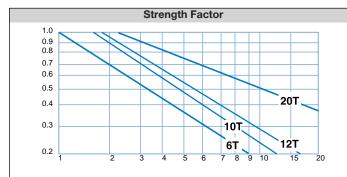



- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Fully sculpted and radiused corners with no pockets or sharp corners to catch and hold debris.
- Like Series 800 and Series 1800, the drive bar on the underside of this belt channels water and debris to the outside of the belt for easier, faster cleanup. Drive bar effectiveness is proven both in-house and in field tests.
- No Cling flights are available.
- Standard Mesh Nub Top indent: 1.0 in (25.4 mm).
- Standard flight height: 4 in (102 mm). Flights can be cut to custom heights.

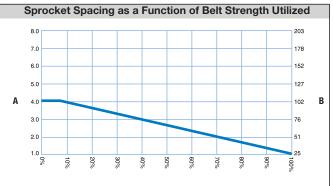



Belt Data								
Belt material	Standard rod material Ø 0.18 in (4.6 mm)	Belt strength		Temperature range (continuous)		Belt weight		
	0.16 (11 (4.6 (11(11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	
Acetal	Polypropylene	1200	1780	34 to 200	1 to 93	1.45	7.08	
Polypropylene	Polypropylene	700	1040	34 to 220	1 to 104	0.98	4.81	

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Fully sculpted and radiused corners with no pockets or sharp corners to catch and hold debris.
- Open area is designed to limit water film formation and maximize water drainage.
- Like Series 800 and Series 1800, the drive bar on the underside of this belt channels water and debris to the outside of the belt for easier, faster cleanup. Drive bar effectiveness is proven both in-house and in field tests.
- Standard Raised Open Grid indent: 1 in (25.4 mm).



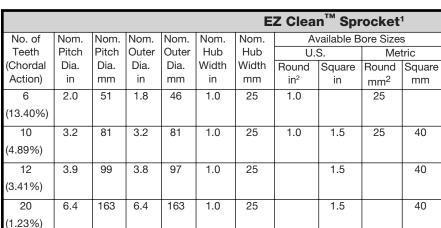
Belt Data										
Belt material	Standard rod material Ø 0.18 in (4.6 mm)	Belt strength			ture range nuous)	Belt weight				
	0.16 111 (4.6 11111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²			
Acetal	Polypropylene	800	1190	34 to 200	1 to 93	1.32	6.44			
Polypropylene	Polypropylene	400	595	34 to 220	1 to 104	0.89	4.35			
Polyethylene	Polyethylene	200	298	-50 to 150	-46 to 66	0.92	4.49			


Sprocket and Support Quantity Reference								
Belt Wid	dth Range ¹	Minimum Number of	Wearstrips					
in	mm	Sprockets Per Shaft ²	Carryway	Returnway				
5	127	2	2	2				
6	152	2	2	2				
7	178	2	3	2				
8	203	3	3	2				
9	229	3	3	2				
10	254	3	3	2				
12	305	3	3	2				
14	356	5	4	3				
15	381	5	4	3				
16	406	5	4	3				
18	457	5	4	3				
20	508	5	5	3				
24	610	7	5	3				
30	762	9	6	4				
32	813	9	7	4				
36	914	9	7	4				
42	1067	11	8	5				
48	1219	13	9	5				
54	1372	15	10	6				
60	1524	15	11	6				
72	1829	19	13	7				
84	2134	21	15	8				
96	2438	25	17	9				
120	3048	31	21	11				
144	3658	37	25	13				
		odd number of sprockets at m) centerline spacing. ³	Maximum 6 in (152 mm) centerline spacing.	Maximum 12 in (305 mm) centerline spacing				

Speed/length ratio (V/L)

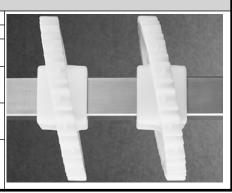
Divide belt speed (V) by the shaft centerline distance (L). Strength Factor is found at intersection of the speed/length ratio and the appropriate sprocket line. See Belt Selection Instructions for more information.

V = ft/min (m/min); T = number of teeth; L = ft (m)

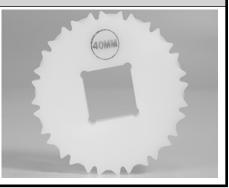

Percentage of allowable belt strength utilized

- A Sprocket spacing, in
- Sprocket spacing, mm

¹ Belts are available in 0.50 in (12.7 mm) increments beginning with 5 in (127 mm). If the actual width is critical, contact Intralox Customer Service.


² This number is a minimum. Heavy-load applications can require additional sprockets.

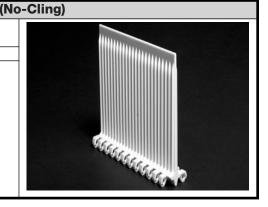
³ Lock down the center sprocket. With only two sprockets, fix the sprocket on the drive journal side only. For lockdown location, see Retainer Rings/Center Sprocket Offset.



	Angled EZ Clean [™] Sprocket³										
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A۱	/ailable B	ore Size	S	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	
Action)	in	mm	in	mm	in	mm	in	in	mm	mm	
12	3.9	99	3.8	97	2.0	50.8		1.5		40	
(3.41%)											
16	5.2	132	5.1	130	2.0	50.8		1.5		40	
(1.92%)											
20	6.4	163	6.4	163	2.0	50.8		1.5		40	
(1.23%)											

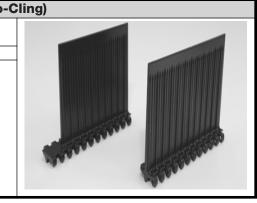
	UHMW Polyethylene Sprocket ⁴											
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom. Available Bore Sizes						
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S	S.	Metric			
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square		
Action)	in	mm	in	mm	in	mm	in	in	mm	mm		
16	5.3	135	5.1	130	1.0	25				40		
(1.92%)												
,												

¹ Contact Intralox Customer Service for lead times. When using polyurethane sprockets, the belt strength for belts rated over 500 lb/ft (744 kg/m) is de-rated to 500 lb/ft (744 kg/m) All other belts maintain the published rating. The temperature range for polyurethane sprockets is 0°F (-18°C) to 120°F (49°C). Contact intralox Customer Service for availability of polyurethane sprockets.


² U.S. key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

³ Contact Intralox Customer Service for lead times.

⁴ Contact Customer Service for lead times.


		Open Hinge Flat Top Base Flight (
Available F	light Height	Available Materials
in	mm	Available iviaterials
4.0	102	Polypropylene, polyethylene, acetal

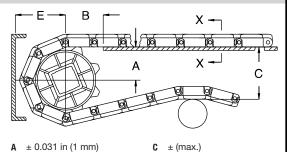
- The No-Cling vertical ribs are on both sides of the flight.
- Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.
- Minimum indent: 1.0 in (25.4 mm)
- Flights can be cut down to custom heights. Minimum height: 0.25 in (6.4 mm).

		Mesh Nub Top Base Flights (No						
Available	Flight Height	Available Materials						
in	mm	Available Materials						
4.0	102	Acetal, polyethylene						
The New Office and Control of the Control of the Control								

- The No-Cling vertical ribs are on both sides of the flight.
- Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.
- Flights can be cut down to custom heights. Minimum height: 0.25 in (6.4 mm).
- Minimum indent: 1.0 in (25.4 mm).

		Sideguai
Availab	le Sizes	Available Materials
in	mm	Available Materials
2	51	Polypropylene
3	76	Folypropylerie

- Standard sideguard orientation is angled inward toward the product (product friendly). If needed, sideguards can be angled outward toward the conveyor.
- When going around the 6 and 10 tooth sprocket, sideguards fan out, opening a gap at the top of the sideguard that can allow small products to fall out. The sideguards stay completely closed when going around the 12, 16, and 20 tooth sprockets.
- Normal gap between the sideguards and the edge of a flight: 0.3 in (7.6 mm).
- Minimum indent: 1.0 in (25 mm)



Conveyor Frame Dimensions

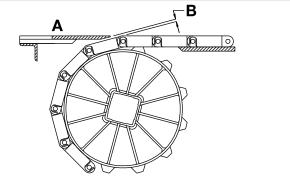
Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see *Basic Conveyor Frame Requirements*.

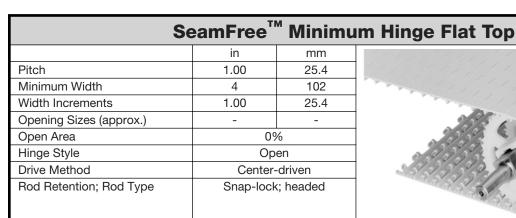
A ± 0.031 in (1 mm) B ± 0.125 in (3 mm)

E ± (min)

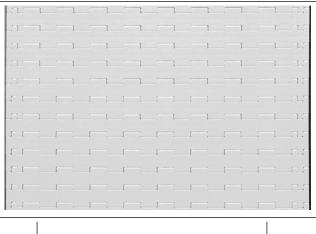

Sprocket Description		A		В		С		E			
Pitch D	Diameter	No. Teeth	Range (Botton	n to Top)	in	mm	in	mm	in	mm	
in	mm	No. reem	in	mm	""	111111	""	mm	""	mm	
	Series 1600 Mesh Top, Open Hinge Flat Top										
2.0	51	6	0.67-0.80	17-20	1.10	28	2.00	51	1.26	32	
3.2	81	10	1.34-1.42	34-36	1.56	40	3.24	82	1.88	48	
3.9	99	12	1.67-1.73	42-44	1.70	43	3.86	98	2.19	56	
5.2	132	16	2.31-2.36	59-60	1.99	51	5.13	130	2.83	72	
6.4	163	20	2.96-3.00	75-76	2.25	57	6.39	162	3.46	88	
Series 1600 Mesh Nub Top, Nub Top											
2.0	51	6	0.67-0.80	17-20	1.10	28	2.08	53	1.34	34	
3.2	81	10	1.34-1.42	34-36	1.56	40	3.31	84	1.96	50	
3.9	99	12	1.67-1.73	42-44	1.70	43	3.94	100	2.27	58	
5.2	132	16	2.31-2.36	59-60	1.99	51	5.13	130	2.83	72	
6.4	163	20	2.96-3.00	75-76	2.25	57	6.47	164	3.53	90	
			Ser	ries 1600 Mini R	ib						
2.0	51	6	0.67-0.80	17-20	1.10	28	2.16	55	1.42	36	
3.2	81	10	1.34-1.42	34-36	1.56	40	3.40	86	2.04	52	
3.9	99	12	1.67-1.73	42-44	1.70	43	4.02	102	2.35	60	
5.2	132	16	2.31-2.36	59-60	1.99	51	5.13	130	2.83	72	
6.4	163	20	2.96-3.00	75-76	2.25	57	6.55	166	3.62	92	

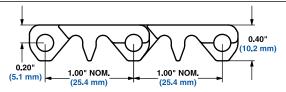
Dead Plate Gap

A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

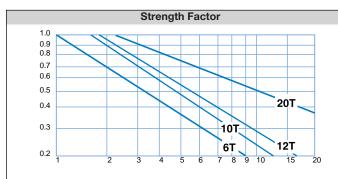

When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.

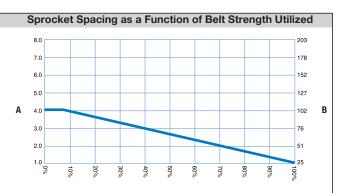

- A Top surface of dead plate
- B Dead plate gap


	Sprocket Description	Gap			
Pitch Diameter		No. Teeth	in	mm	
in	mm	No. reeur	""	111111	
2.0	51	6	0.134	3.4	
3.2	81	10	0.079	2.0	
3.9	99	12	0.066	1.7	
6.4	163	20	0.039	1.0	

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Smooth, closed upper surface with fully flush edges.
- Fully sculpted and radiused corners with no pockets or sharp corners to catch and hold debris.
- Cam-link hinges provide easy cleaning with greater hinge and rod exposure as the belt moves around the sprockets.
- The drive bar on the underside of this belt combines with a
 patent-pending flume feature to channel water and debris
 to the outside of the belt for easier, faster cleanup. Drive
 bar effectiveness is proven both in-house and in field
 tests
- Designed for use with S1600 Angled EZ Clean sprockets.
 Also compatible with standard S1600 EZ Clean sprockets.
- Belts over 18 in (457 mm) are built with multiple modules per row, but seams are minimized.



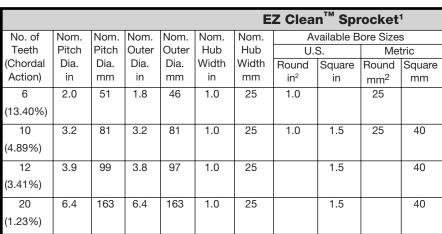
Belt Data									
Belt Material	Standard Rod Material Ø 0.18 in (4.6 mm)	Belt Strength			ure Range nuous)	Belt Weight			
	9 0.18 111 (4.8 111111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²		
Acetal	Acetal	350	520	-50 to 200	-46 to 93	1.47	7.18		
Acetal	Polypropylene	325	480	34 to 200	1 to 93	1.40	6.84		
Acetal	Polyethylene	225	330	-50 to 150	-46 to 66	1.40	6.83		


Sprocket and Support Quantity Reference								
Belt Wic	th Range ¹	Minimum Number of	W	earstrips				
in	mm	Sprockets Per Shaft ²	Carryway	Returnway				
4	102	2	2	2				
5	127	2	2	2				
6	152	2	2	2				
7	178	2	3	2				
8	203	3	3	2				
9	229	3	3	2				
10	254	3	3	2				
12	305	3	3	2				
14	356	5	4	3				
15	381	5	4	3				
16	406	5	4	3				
18	457	5	4	3				
20	508	5	5	3				
24	610	7	5	3				
30	762	9	6	4				
32	813	9	7	4				
36	914	9	7	4				
42	1067	11	8	5				
48	1219	13	9	5				
54	1372	15	10	6				
60	1524	15	11	6				
72	1829	19	13	7				
84	2134	21	15	8				
96	2438	25	17	9				
120	3048	31	21	11				
144	3658	37	25	13				
		dd number of sprockets at	Maximum 6 in (152 mm) centerline	Maximum 12 in (305 mm) centerline				
maxim	um 4 in (102 mr	n) centerline spacing.3	spacing	spacing				

Speed/Length Ratio (V/L)

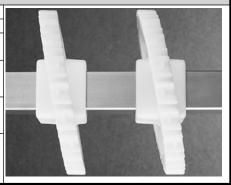
Divide belt speed (V) by the shaft centerline distance (L). Strength factor is found at intersection of the speed/length ratio and the appropriate sprocket line. See Belt Selection Instructions for more information.

V = ft/min (m/min); T = number of teeth; L = ft (m)

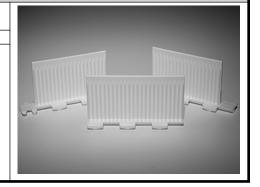

Percentage of allowable belt strength utilized


- A Sprocket spacing, in
- Sprocket spacing, mm

¹ Belts are available in 1.0 in (25.4 mm) increments beginning with 4 in (101.6 mm). If the actual width is critical, contact Intralox Customer Service.


 $^{^{\}rm 2}$ This number is a minimum. Heavy-load applications can require additional sprockets.

³ Lock down the center sprocket. With only two sprockets, fix the sprocket on the drive journal side only.



	Angled EZ Clean [™] Sprocket ³										
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A۱	/ailable B	ore Size	S	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S	S.	Metric		
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	
Action)	in	mm	in	mm	in	mm	in	in	mm	mm	
12	3.9	99	3.8	97	2.0	50.8		1.5		40	
(3.41%)											
16	5.2	132	5.1	130	2.0	50.8		1.5		40	
(1.92%)											
20	6.4	163	6.4	163	2.0	50.8		1.5		40	
(1.23%)											

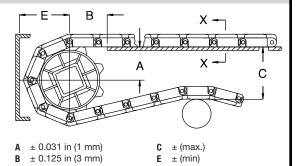
Minimum Hinge Flat Top Base Flights (Double No-Cling								
Available F	light Height	Available Materials						
in	mm	Available Waterlais						
3.0	76.2	Acetal						

- The No-Cling vertical ribs are on both sides of the flight.
- Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.
- Flights can be cut down to a minimum height of 0.5 in (12.7 mm).
- Flights of even-inch widths come standard with 1 in (25.4 mm) indents. Flights of odd-inch widths are available for retrofits and require machined indents, which have contain marks and evidence of modification.

¹ Contact Intralox Customer Service for lead times. When using polyurethane sprockets, the belt strength for belts rated over 500 lb/ft (744 kg/m) is de-rated to 500 lb/ft (744 kg/m). All other belts maintain the published rating. The temperature range for polyurethane sprockets is 0°F (-18°C) to 120°F (49°C). Contact Intralox Customer Service for availability of polyurethane sprockets.

² U.S. key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

³ Contact Intralox Customer Service for lead times.

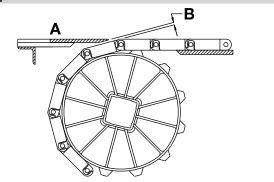

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in anv design.

SERIES 1650

For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see Basic Conveyor Frame Requirements.

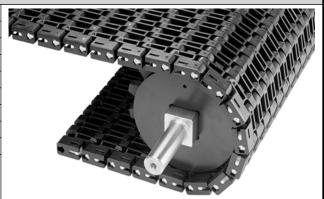

Sp	Sprocket Description		Α		E	3	(C E		Ε
Pitch D	iameter	No. Teeth	Range (Bottor	n to Top)	in	mm	in	mm	in	mm
in	mm	No. reeur	in mm		""	111111	""	111111	""	111111
			Series 1650 Sear	mfree Minimum	Hinge Fla	t Top				
2.0	51	6	0.67-0.80	17-20	1.10	28	2.00	51	1.26	32
3.2	81	10	1.34-1.42	34-36	1.56	40	3.24	82	1.88	48
3.9	99	12	1.67-1.73	42-44	1.70	43	3.86	98	2.19	56
5.2	132	16	2.31-2.36	59-60	1.99	51	5.13	130	2.83	72
6.4	163	20	2.96-3.00	75-76	2.25	57	6.40	163	3.46	88

Dead Plate Gap

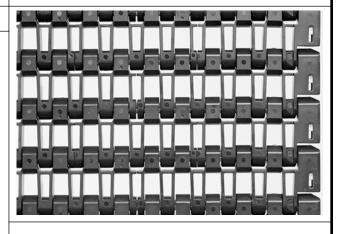
A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

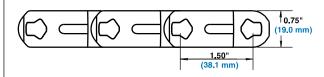
When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.


A Top surface of dead plate

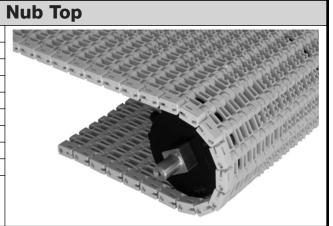
B Dead plate gap


	Sprocket Description		Gap			
Pitch Diameter		No. Teeth	in	mm		
in	mm	No. Teetii	ın	mm		
2.0	51	6	0.134	3.4		
3.2	81	10	0.079	2.0		
3.9	99	12	0.066	1.7		
6.4	163	20	0.039	1.0		

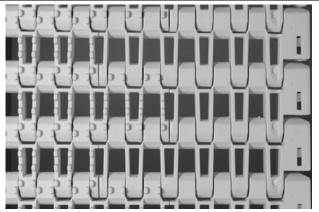


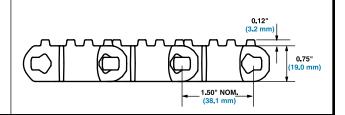
		Flush	Grid
	in	mm	
Pitch	1.50	38.1	
Minimum Width	5	127	
Width Increments	1.00	25.4]
Opening Sizes (approx.)	0.62 × 0.50	15.7 × 12.7	
	0.70×0.26	17.8 × 6.6	
Open Area	37	%	1
Hinge Style	Clo	sed	1
Drive Method	Center/hir	nge-driven	1
Rod Retention; Rod Type	Slidelox; (unheaded	1
	1		1

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- · Fully flush edges.
- Abrasion resistant nylon used in modules and rods.
- Slidelox are highly visible, orange acetal.
- Provides excellent belt and sprocket durability, especially in tough-material handling applications.
- Multi-rod hinge design significantly reduces cam shaft requirements. Every row contains two rectangular rods.
- Abrasion resistant system lasts 2.5 to 3 times longer than conventional modular plastic belts.
- Conveyor requirements: Intralox recommends steel carryways with either a chevron pattern or a flat continuous carryway. Do not use straight, parallel wearstrips. Do not use on pusher conveyors.
 - Ultra abrasion resistant polyurethane sprockets with large lug teeth.



Belt Data							
Belt material	Standard rod material 0.25×0.17 in (6.4×4.3)	Belt st	rength	Temperat (contir	cure range nuous)1	Belt w	/eight
	mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
AR nylon	Nylon	1800	2678	-50 to 240	-46 to 116	2.21	10.78
Detectable nylon	Nylon	1500	2232	-50 to 180	-46 to 82	2.28	11.13
Low Wear Plus	Nylon	500	744	0 to 120	-18 to 49	2.56	12.50

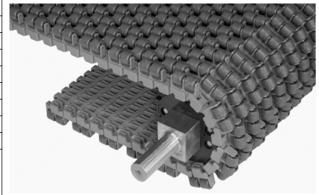

	Flu	ush Grid
	in	mm
Pitch	1.50	38.1
Minimum Width	16	406.4
Width Increments	1.00	25.4
Opening Sizes (approx.)	0.70×0.26	18 × 7
Open Area	37	%
Product Contact Area	89	%
Hinge Style	Clos	sed
Drive Method	Center/hin	ge-driven
Rod Retention; Rod Type	Slidelox; ι	ınheaded

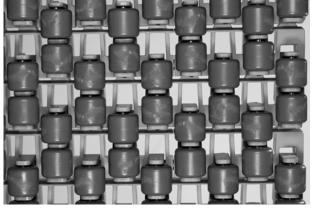


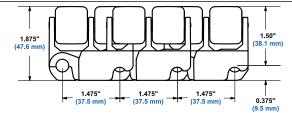
- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- · Fully flush edges.
- Abrasion resistant nylon used in modules and rods.
- Slidelox are highly visible, orange acetal.

SERIES 1700

- · Provides excellent belt and sprocket durability, especially in tough-material handling applications.
- Abrasion resistant system lasts 2.5 to 3 times longer than conventional modular plastic belts.
- · Multi-rod hinge design significantly reduces cam shaft requirements. Every row contains two rectangular rods.
- Ultra abrasion-resistant, polyurethane split sprockets with large lug teeth.
- Conveyor requirements: Intralox recommends steel carryways with either a chevron pattern or a flat continuous carryway. Do not use straight, parallel wearstrips. Do not use on pusher conveyors.
- Minimum nominal alternating edge indents: 4 in (102 mm) and 6 in (152 mm).




	Belt Data						
	Standard rod material	Relt strength		Temperature range		Belt weight	
Belt material	0.25×0.17 in (6.4×4.3)			(contir	nuous)¹	Deit weignt	
	mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
AR nylon	Nylon	1800	2678	-50 to 240	-46 to 116	2.21	10.78
Easy Release Traceable PP	Nylon	1500	2230	34 to 220	1 to 104	1.84	8.98
Low Wear Plus	Low Wear Plus	500	744	0 to 120	-18 to 49	2.58	12.60



	Transve	rse Rolle	r Top™
	in	mm	acata
Pitch	1.475	37.5	FIG. F
Minimum Width	12	304.8	and a
Width Increments	2.00¹	50.8	
Min Opening Size (approx.)	0.62 x 0.50	16 x 13	
Max. Opening Size (approx.)	0.70 x 0.26	18 x 7	-6
Open Area	26	%	1
Hinge Style	Clos	sed	40
Drive Method	Center/hin	ge-driven	
Rod Retention; Rod Type	Occluded edg	ge; unheaded	

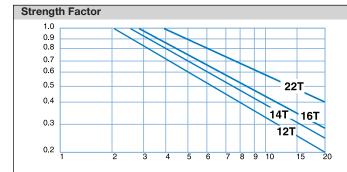
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a helt.
- Provides excellent belt and sprocket durability, especially in tough-material handling applications.
- Must be assembled in two-row increments.
- Roller axles are stainless steel for durability and longlasting performance.
- Ultra abrasion resistant, polyurethane split sprockets with large lug teeth.
- Split sprockets are available.
- Roller diameter: 0.95 in (24.1 mm).
- Roller length: 0.825 in (21 mm).
- Roller spacing: 1.0 in (25.4 mm).
- Minimum return roller diameter: 6.0 in (152.4 mm).

Belt Data							
Belt material	Standard rod material Ø 0.312 in (7.9 mm)	Belt st	rength	Temperat (contir	ure range nuous)	Belt weight	
	0.312 1 (7.9 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
Polypropylene	Nylon	2200	3270	34 to 200	1 to 93	4.70	22.96

¹ Available in width increments of 2 in (50.8 mm) except 14 in (356 mm) wide belt not available.

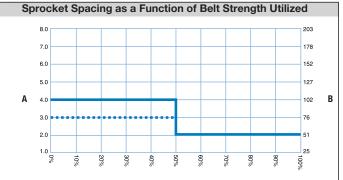
	Sprocke	t and Support Quant	tity Reference Flush Grid an	d Flush Grid Nub Top				
Belt Wid	dth Range ¹	Minimum Number of						
in	mm	Sprockets Per Shaft ²	Carryway	Returnway				
5	127	2						
6	152	2	7					
7	178	3	7					
8	203	3						
9	229	3	7					
10	254	3	7					
12	305	3	7					
14	356	3	7					
15	381	3	7					
16	406	5	7					
18	457	5	Place wearstrips in a chevron	Diago was watering in a should not be a				
20	508	5	pattern or use a flat continuous	Place wearstrips in a chevron pattern or use a flat continuous returnway. Do not				
24	610	5	carryway. Do not use straight,	use straight, parallel wearstrips.				
30	762	7	parallel wearstrips.	use straight, parallel wearstrips.				
32	813	9						
36	914	11						
42	1067	13						
48	1219	15						
54	1372	17						
60	1524	19						
72	1829	23						
84	2134	27						
96	2438	31						
120	3048	39						
144	3658	47						
For other v	widths, use an o	odd number of sprockets at	Maximum 6 in (152 mm) centerline	Maximum 12 in (305 mm) centerline				
maximu	um 4 in (102 mr	n) centerline spacing.3,4	spacing	spacing				

¹ Belts are available in 1.00 in (25.4 mm) increments, beginning at 5 in (127 mm). If the actual width is critical, contact Intralox Customer Service.


² This number is a minimum. Heavy-load applications can require additional sprockets.

³ Lock down the center sprocket. With only two sprockets, fix the sprocket on the drive journal side only. For lockdown location, see Retainer Rings/Center Sprocket Offset.

⁴ For drive shaft, use an odd number of sprockets at maximum of 3.00 in (76.2 mm) centerline spacing.


Belt Wic	Ith Range ¹	Minimum Number of	We	earstrips
in	mm	Sprockets Per Shaft ²	Carryway	Returnway
5	127	2	2	2
6	152	2	2	2
7	178	3	2	2
8	203	3	2	2
9	229	3	3	2
10	254	3	3	2
12	305	3	3	2
14	356	3	3	3
15	381	3	3	3
16	406	5	3	3
18	457	5	3	3
20	508	5	4	3
24	610	5	4	3
30	762	7	5	4
32	813	7	5	4
36	914	9	5	4
42	1067	9	6	5
48	1219	11	7	5
54	1372	11	7	6
60	1524	13	8	6
72	1829	15	9	7
84	2134	17	11	8
96	2438	21	12	9
120	3048	25	15	11
144	3658	29	17	13
		odd number of sprockets at nm) centerline spacing. ³	Maximum 6 in (152 mm) centerline spacing	Maximum 12 in (305 mm) centerling spacing

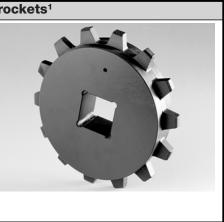
Speed/length ratio (V/L)

Divide belt speed (V) by the $shaft_L$ centerline distance (L). Strength Factor is found at intersection of the speed/length ratio and the appropriate sprocket line. See Belt Selection Instructions for more information.

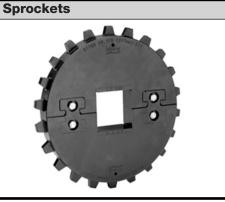
V = ft/min (m/min); T = number of teeth; L = ft (m)

Percentage of allowable belt strength utilized

- A Sprocket spacing, in
- B Sprocket spacing, mm

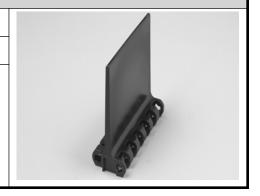

Solid line: Flush Grid and Flush Grid Nub Top Dashed line: Transverse Roller Top

¹ Belts are available in 1.00 in (25.4 mm) increments beginning with 5 in (127 mm). If the actual width is critical, contact Intralox Customer Service.


² This number is a minimum. Heavy-load applications can require additional sprockets.

³ Lock down the center sprocket. With only two sprockets, fix the sprocket on the drive journal side only. For lockdown location, see Retainer Rings/Center Sprocket Offset.

				Ultra	a Abra	sion F	Resista	nt Poly	ureth:	ane Sp	rc
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Available Bore Sizes				
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S	S.	Me	etric	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	
Action)	in	mm	in	mm	in	mm	in	in	mm	mm	
12	5.8	147	5.85	149	1.5	38		1.5		40	
(3.41%)											
14	6.7	170	6.80	173	1.5	38		1.5		40	
(2.51%)											
16	7.7	196	7.74	197	1.5	38		1.5		40	
(1.92%)								2.5		60	
22 (1.02%)	10.5	267	10.59	269	1.5	38		2.5			



	Ultra Abrasion Resistant Polyurethane Split													
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A۱	/ailable B	ore Size	S				
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.		Metric					
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round Square		Round	Square				
Action)	in	mm	in	mm	in	mm	in	in	mm	mm				
14	6.7	170	6.80	173	1.5	38		1.5		40				
(2.51%)								2.5		60				
16	7.7	196	7.74	197	1.5	38		1.5		40				
(1.92%)								2.5		60				
22	10.5	267	10.59	269	1.5	38		2.5		60				
(1.02%)								3.5						

Streamline Flights								
Available	Flight Height	Available Materials						
in	mm	Available iviaterials						
4.0	102	Nylon (AR), detectable nylon						
6.0	152	Nylon (Ah), detectable hylon						
 Flights are s 	Flights are smooth (streamlined) on both sides.							

- Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.
 Can be cut down to custom heights. Minimum height: 0.25 in (6.4 mm).
- Minimum indent: 2.0 in (51 mm).

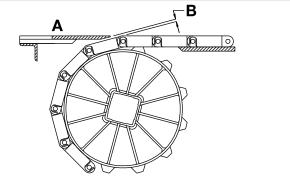


Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in any design.

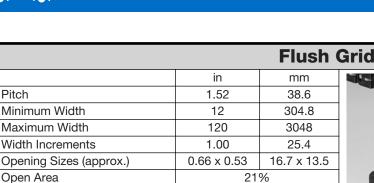
For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see *Basic Conveyor Frame Requirements*.


Sprocket Description			Α		Е	3	С		Е			
Pitch D	Diameter	No. Teeth	Range (Bottor	n to Top)	in	mm	in	mm	in	mm		
in	mm	No. reem	in	mm	""	111111	""	111111	""	111111		
Series 1700 Flush Grid												
5.8	147	12	2.36-2.46	60-62	2.42	61	5.67	144	3.27	83		
6.7	170	14	2.85-2.93	72-74	2.63	67	6.61	168	3.74	95		
7.7	196	16	3.33-3.40	85-86	2.81	71	7.56	192	4.22	107		
10.5	267	22	4.78-4.83	121-123	3.30	84	10.41	264	5.64	143		
Series 1700 Flush Grid Nub Top												
5.8	147	12	2.36-2.46	60-62	2.42	61	5.79	147	3.39	86		
6.7	170	14	2.85-2.93	72-74	2.63	67	6.73	171	3.86	98		
7.7	196	16	3.33-3.40	85-86	2.81	71	7.68	195	4.34	110		
10.5	267	22	4.78-4.83	121-123	3.30	84	10.53	267	5.76	146		
	•		Series 170	00 Transverse R	oller Top				•			
5.8	147	12	2.42-2.52	61-64	2.36	60	6.92	176	4.46	113		
6.7	170	14	2.91-3.00	74-76	2.56	65	7.87	200	4.93	125		
7.7	196	16	3.40-3.47	86-88	2.73	69	8.81	224	5.41	137		
10.5	267	22	4.84-4.90	123-124	3.20	81	11.67	296	6.83	173		

Dead Plate Gap

A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.


When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.

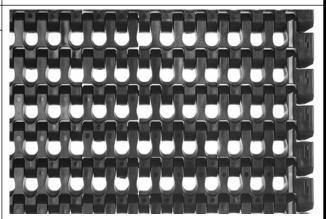
- A Top surface of dead plate
- B Dead plate gap

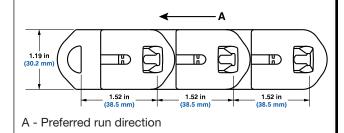
	Sprocket Description	Gap			
Pitch D	iameter	No. Teeth	in	mm	
in	mm	No. Teetii	""	111111	
5.8	147	12	0.099	2.5	
6.7	170	14	0.085	2.2	
7.7	196	16	0.074	1.9	
10.5	267	22	0.054	1.4	

Closed

Center/hinge-driven

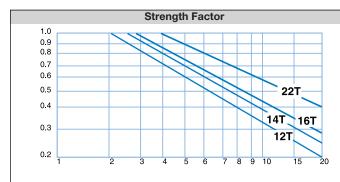
Slidelox; unheaded


- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Fully flush edges.

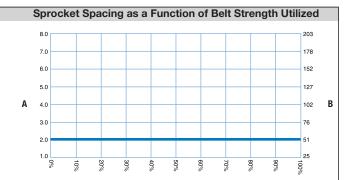

Hinge Style

Drive Method

Rod Retention; Rod Type


- Highly visible Slidelox rod retention feature.
- Provides excellent belt and sprocket durability, especially in tough-material handling applications.
- · Large belt openings allow high-volume water flow and drainage.
- Semi-circle rod design significantly reduces rod wear and pitch elongation, and delivers predictable performance for maintenance planning in tough applications.
- Ultra abrasion-resistant polyurethane sprockets. Sprockets have large lug teeth that provide reliable engagement, extend sprocket life, and clear debris from the drive pockets.
- Conveyor requirements: Intralox recommends steel carryways with either a chevron pattern or a flat continuous carryway. Do not use straight, parallel wearstrips. Do not use on pusher conveyors.
- For specific design guidelines, contact Intralox Customer Service.

Belt Data										
Belt material	Standard rod material 0.25 x 0.17 in (6.4 x 4.3	Belt st	rength	•	ture range nuous)	Belt weight				
	mm)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²			
Low Wear Plus	Stainless steel	1200	1790	0 to 120	-18 to 49	7.10	34.66			
Low Moisture Abrasion Resistant	Stainless steel	1800	2680	0 to 212	-18 to 100	6.73	32.86			


		Sprocket and Su	pport Quantity Reference Flus	sh Grid			
Belt Wic	dth Range ¹	Minimum Number of	Wea	rstrips			
in	mm	Sprockets Per Shaft ²	Carryway	Returnway			
12-14	305-356	5					
15-18	381-457	7					
20	508	9					
24	610	11					
30	762	13					
32	813	15					
36	914	17	For energific community suidelines	For specific returnway guidelines,			
42	1067	19	For specific carryway guidelines, contact Intralox Customer Service, or	contact Intralox Customer Service, or see the S1750 Design Guidelines.			
48	1219	23	see the S1750 Design Guidelines.				
54	1372	25	see the 31730 Design Guidelines.	see the 51750 Design Guidelines.			
60	1524	29					
72	1829	35					
84	2134	41					
96	2438	47					
108	2743	53					
120	3038	59					
For other v	widths, use an o	dd number of sprockets at					
maxim	num 2 in (51 mm) centerline spacing.3,4					

Speed/length ratio (V/L)

Divide belt speed (V) by the shaft_L centerline distance (L). Strength Factor is found at intersection of the speed/length ratio and the appropriate sprocket line. See Belt Selection Instructions for more information.

V = ft/min (m/min); T = number of teeth; L = ft (m)

Percentage of allowable belt strength utilized

- Α Sprocket spacing, in
- Sprocket spacing, mm

Solid line: Flush Grid

Dashed line: Transverse Roller Top

	Ultra Abrasion Resistant Polyurethane Sprocket⁵										
No. of		Nom.		Nom.		Nom.	Av	ailable B	ore Sizes		
Teeth	Pitch	Pitch	Outer	1	1	Hub	U.S.	U.S. Metric			
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round in	Square	Round	Square	
Action)	in	mm	in	mm	in	mm		in	mm	mm	
16	7.8	198	7.9	201	1.5	38		2.5		60	
(1.92%)											
22	10.6	269	10.9	277	1.5	38		2.5		60	
(1.02%)								3.5			

¹ Belts are available in 1.00 in (25.4 mm) increments beginning with 12 in (305 mm). If the actual width is critical, contact Intralox Customer Service.

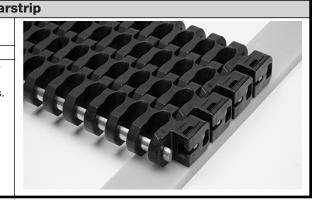
² This number is a minimum. Heavy-load applications can require additional sprockets.

³ Lock down the center sprocket. With only two sprockets, fix the sprocket on the drive journal side only.

 $^{^{4}}$ For drive shaft, use an odd number of sprockets at maximum of 2.00 in (50.8 mm) centerline spacing.

⁵ Contact Customer Service for lead times.

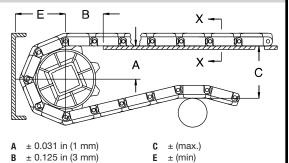
					Ultra	Abra	sion Resi	stant :	Split Sp	rocket
No. of	Nom.	Nom.	Nom.			Nom.			ore Sizes	- COROL
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.		Metr	ic
(Chordal		Dia.	Dia.	Dia.	Width	Width	Round in	Square	Round	Square
Action)	in	mm	in	mm	in	mm		in	mm	mm
14								1.5		40
(2.51%)	6.8	173	6.9	175	1.5	38		2.5		60
16	7.0	100	7.0	004	4 -			1.5		40
(1.92%)	7.8	198	7.9	201	1.5	38		2.5		60
22	10.6	269	10.9	277	1.5	38		2.5		60
(1.02%)								3.5		


	3-Piece Streamline Flights								
Available F	light Height	Available Materials							
in	mm	Available Materials							
3.0	76	Low Wear Plus, Low Moisture Abrasion Resistant							
4.0	102 Low Wear Plus, Low Moisture Abrasion Res								

- Flight consists of 3 pieces: the base module, the attachment, and the rod.
- Flight is smooth (streamlined) on both sides.
- Available with zero indent. The first available indent is 1.625 in (41 mm). Contact Intralox Customer Service for more information.
- Flights can be cut as short as 1.5 in (38 mm) if necessary for a particular application. If a shorter flight is needed, the flight base module without a flight attachment functions as a 0.75 in (19 mm) raised link. Contact Intralox Customer Service for more information.

		Urethane Wea
Dimer	nsions	Available Colors
in	mm	Available Colors
0.50 x 2 x 216	13 x 51 x 5486	Blue

- Intended for dry, aqueous, and solid fatty food applications. Do not use for liquid-oil applications.
- Contact Intralox Customer Service for friction and belt strength analysis.
- Temperature range is 32°F (0°C) to 120°F (49°C).

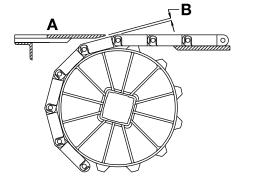

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in any design.

SERIES 1750

For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

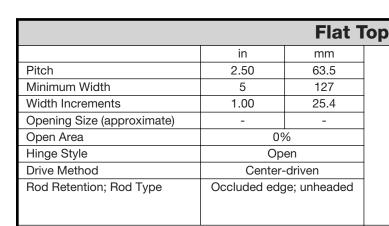
For complete descriptions of the dimensions, see Basic Conveyor Frame Requirements.

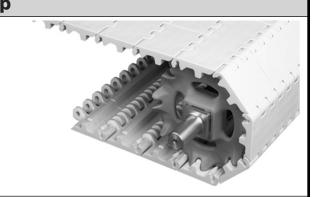

Sp	rocket Des	scription	Α	В		С		E			
Pitch D	Diameter	No. Teeth	Range (Botton	in	mm	in	mm	in	100.100		
in	mm	No. reeur	in	mm	""		""	111111	""	mm	
	Series 1750 Flush Grid										
6.8	173	14	2.72-2.81	69-71	2.83	72	6.81	173	4.06	103	
7.8	198	16	3.21-3.29	82-84	3.04	77	7.77	197	4.54	115	
10.6	269	22	4.67-4.73 119-120		3.68	93	10.65	271	5.98	152	

Dead Plate Gap

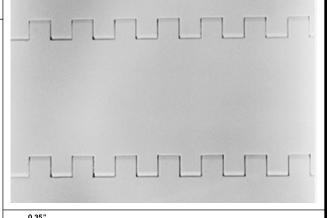
A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

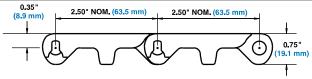
When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.

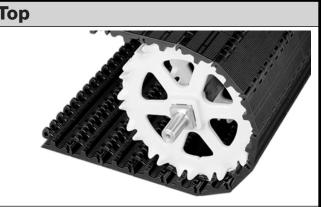

Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.

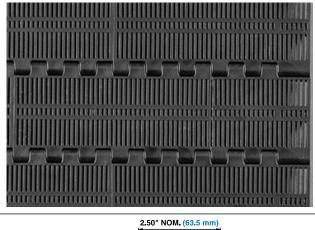


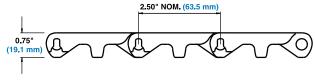
A Top surface of dead plate


B Dead plate gap


	Sprocket Description	Gap			
Pitch D	iameter	No. Teeth	in	mm	
in	mm	No. reeur	ın	111111	
6.8	173	14	0.085	2.2	
7.8	198	16	0.075	1.9	
10.6	269	22	0.054	1.4	

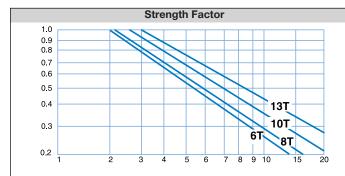

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Smooth, closed upper surface with fully flush edges.
- Impact resistant belt designed for abusive applications.
- · Cam-link hinges provide easy cleaning with greater hinge and rod exposure as the belt moves around the sprockets.
- Like Series 800 and Series 1600, the drive bar on the underside of this belt channels water and debris to the outside of the belt for easier, faster cleanup. Drive bar effectiveness is proven both in-house and in field tests.
- Easy retrofit from Series 800 without extensive conveyor frame changes for most meat industry applications since the A, B, C, and E dimensions are within 0.25 in (6 mm) of Series 800.



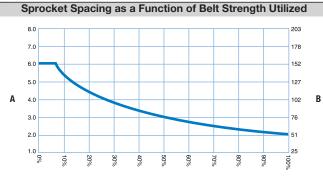

Belt Data								
Belt material	Standard rod material Ø 0.312 in (7.9 mm)	Belt strength			ture range nuous)	Belt weight		
	0.312 in (7.9 min)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	
Polypropylene	Polypropylene	1200	1786	34 to 220	1 to 104	2.06	10.06	
Acetal	Polyethylene	1200	1786	-50 to 150	-46 to 66	3.36	16.40	
Acetal	Polypropylene	1500	2232	34 to 200	1 to 93	3.36	16.40	
X-Ray Detectable Acetal ¹	Polyethylene	1000	1490	-50 to 150	-46 to 66	3.77	18.41	
PK	PK	1200	1786	-40 to 200	-40 to 93	3.36	16.41	

	Mesh			
in	mm			
2.50	63.5			
5	127			
1.00	25.4			
0.07 × 0.75	1.7 × 19.1			
32%				
Ор	Open			
Center-	-driven			
Occluded edg	ge; unheaded			
	2.50 5 1.00 0.07 × 0.75 32 Op Center			

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Fully flush edges with recessed rods prevent edge damage and rod migration.
- Flights and other accessories are available.



Belt Data									
Belt material	Standard rod material Ø 0.312 in (7.9 mm)	Belt strength			ure range nuous)	Belt weight			
	0.312 1 (7.9 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²		
Polypropylene	Polypropylene	800	1190	34 to 220	1 to 104	1.44	7.03		
UV Resistant PP	Acetal	1100	1640	34 to 200	1 to 93	1.55	7.56		
UV resistant acetal	Acetal	1500	2230	-50 to 200	-46 to 93	2.27	11.08		
Polyethylene	Polyethylene	400	595	-50 to 150	-46 to 66	1.50	7.32		
Nylon	Nylon	1000	1488	-50 to 240	-46 to 116	1.81	8.84		


	Sprocket and Support Quantity Reference									
Belt Wid	dth Range ¹	Minimum Number of	W	earstrips						
in	mm	Sprockets Per Shaft ²	Carryway	Returnway						
5	127	1	2	2						
6	152	2	2	2						
7	178	2	2	2						
8	203	2	2	2						
9	229	2	2	2						
10	254	2	3	2						
12	305	3	3	2						
14	356	3	3	3						
15	381	3	3	3						
16	406	3	3	3						
18	457	3	3	3						
20	508	3	4	3						
24	610	5	4	3						
30	762	5	5	4						
32	813	5	5	4						
36	914	7	5	4						
42	1067	7	6	5						
48	1219	9	7	5						
54	1372	9	7	6						
60	1524	11	8	6						
72	1829	13	9	7						
84	2134	15	11	8						
96	2438	17	12	9						
		d number of sprockets at	Maximum 9 in (229 mm) centerline Maximum 12 in (305 mm) cen							
maxim	um 6 in (152 m	m) centerline spacing. ³	spacing	spacing						

Speed/length ratio (V/L)

Divide belt speed (V) by the shaft centerline distance (L). Strength Factor is found at intersection of the speed/length ratio and the appropriate sprocket line. See Belt Selection Instructions for more information.

V = ft/min (m/min); T = number of teeth; L = ft (m)

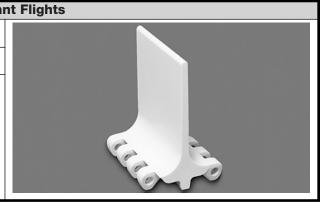
Percentage of allowable belt strength utilized

- A Sprocket spacing, in
- B Sprocket spacing, mm

¹ If belt width exceeds a number listed in the table, see the sprocket and support material minimums for the next larger width range. Belts are available in 1.00 in (25.4 mm) increments beginning with 5.0 in (127 mm). If the actual width is critical, contact Intralox Customer Service.

 $^{^{\}mathrm{2}}$ This number is a minimum. Heavy-load applications can require additional sprockets.

³ Lock down the center sprocket. With only two sprockets, fix the sprocket on the drive journal side only. For lockdown location, see Retainer Rings/Center Sprocket Offset.


EZ Clean [™] Sprocket¹										
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	/ailable B	ore Size	S
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in	in	mm	mm
6	5.0	127	4.6	117	1.5	38		1.5		40
(13.40%)										
8	6.5	165	6.2	157	1.5	38		1.5		40
(7.61%)										
10	8.1	206	7.8	198	1.5	38		1.5		40
(4.89%)										
13	10.5	267	10.3	262	1.5	38		1.5		40
(2.91%)								2.5		60

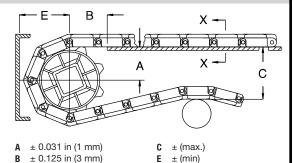
	Angled EZ Clean [™] Sprocket²										
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	/ailable B	ore Size	S	TANK TANK
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	A DESCRIPTION OF THE PERSON OF
Action)	in	mm	in	mm	in	mm	in	in	mm	mm	
8	6.5	165	6.2	157	2.0	50.8		1.5		40	
(7.61%)											
,											
											- CONTROL - CONTROL - CONTROL
											STATE OF THE PERSON NAMED IN COLUMN 1
											U U

		Impact Resistar				
Available F	light Height	Available Materials				
in	mm	Available Waterlas				
4.0	102	Polypropylene, polyethylene, acetal, X-				
		Ray Detectable Acetal				
• Each flight rises out of the center of its supporting module, molded						

- Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.
- Flights can be cut down to custom heights. Minimum height: 0.25 in (6.4 mm).

¹ Contact Intralox Customer Service for lead times.

² Contact Intralox Customer Service for lead times.

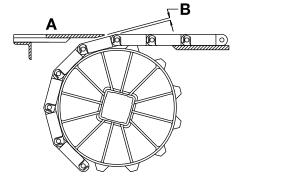


Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in anv design.

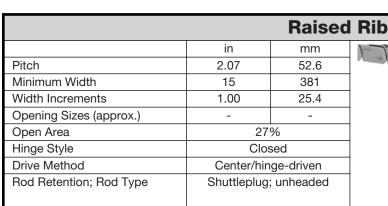
For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

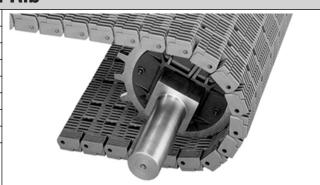
For complete descriptions of the dimensions, see Basic Conveyor Frame Requirements.

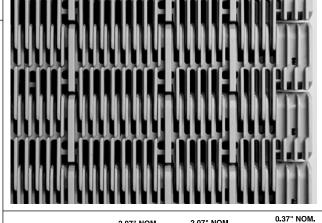

Sprocket Description			Α	A		В		С		E	
Pitch D	Diameter	No. Teeth	Range (Bottom to Top) in mm		mm	in	mm	in	mm		
in	mm	No. reeur	in	mm	""		""	111111			
Series 1800 Flat Top, Mesh Top											
5.0	127	6	1.77-2.10	45-53	1.87	47	4.95	126	2.91	74	
6.5	165	8	2.62-2.87	66-73	2.23	57	6.48	165	3.68	93	
8.1	206	10	3.45-3.65	88-93	2.59	66	8.04	204	4.46	113	
10.5	267	13	4.67-4.82	119-123	3.02	77	10.40	264	5.64	143	

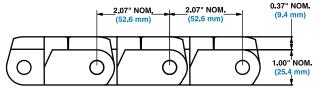
Dead Plate Gap

A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

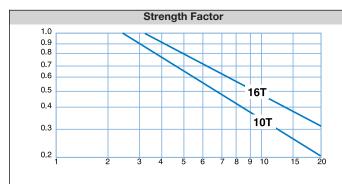

When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.

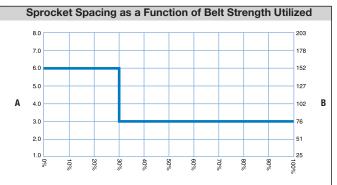

Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.


- A Top surface of dead plate
- B Dead plate gap


	Sprocket Description	Gap			
Pitch D	iameter	No. Teeth	in	mm	
in	mm	No. Teetii	ın		
5.0	127	6	0.150	3.8	
6.5	165	8	0.108	2.8	
8.1	206	10	0.091	2.3	
10.5	267	13	0.074	1.9	

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Engineered resin module material provides increased resistance to chemicals and temperature changes.
- Tall belt ribs and strong fingers enable robust transfers.
- Increased module thickness and rod diameter provide superior belt strength and increased belt life.
- Minimal back tension required.
- Split sprockets available for easy installation.





Belt Data									
Belt material	Standard rod material 0.38 (9.7 mm)	Belt strength Temperature ra (continuous)		•	Belt weight				
	0.56 (9.7 11111)	lb/ft	kg/m	°F	°C	lb/ft ² kg/m ²			
Enduralox polypropylene	Polypropylene	4000	5952	34 to 220	1 to 104	3.90	19.04		

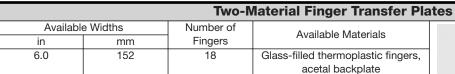
	Sprocket and Support Quantity Reference									
Belt Wic	th Range ¹	Minimum Number of	Wearstrips							
in	mm	Sprockets Per Shaft ²	Carryway	Returnway						
15	381	3	3	3						
18	457	3	3	3						
24	610	5	4	3						
30	762	5	5	4						
36	914	7	5	4						
42	1067	7	6	5						
48	1219	9	7	5						
54	1372	9	7	6						
60	1524	11	8	6						
72	1829	13	9	7						
84	2134	15	11	8						
96	2438	17	12	9						
120	3048	21	15	11						
144	3658	25	17	13						
For other w	ridths, use an o	dd number of sprockets at	Maximum 9 in (229 mm) centerline	Maximum 12 in (305 mm) centerline						
Maxim	um 6 in (152 mr	n) centerline spacing.3	spacing	spacing						

Speed/length ratio (V/L)

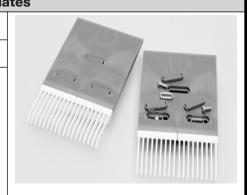
Divide belt speed (V) by the shaft centerline distance (L). Strength Factor is found at intersection of the speed/length ratio and the appropriate sprocket line. See Belt Selection Instructions for more information.

V = ft/min (m/min); T = number of teeth; L = ft (m)

Percentage of allowable belt strength utilized


- A Sprocket spacing, in
- Sprocket spacing, mm

						S	plit Me	etal Sp	rocket	t	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable B	ore Size	S	112
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	- 0 10
Action)	in	mm	in	mm	in	mm	in	in	mm	mm	
10	6.7	170	7.0	177	1.7	43		2.5		60	
(4.89%)											
15	10.0	254	10.3	262	1.7	43		3.5			
(2.19%)											
16	10.6	269	11.0	279	1.7	43	3.5	3.5		90	
(1.92%)											3


¹ If belt width exceeds a number listed in the table, see the sprocket and support material minimums for the next larger width range. If the actual width is critical, contact Intralox Customer Service.

 $^{^{\}rm 2}$ This number is a minimum. Heavy-load applications can require additional sprockets.

³ Lock down the center sprocket. See Locked Sprocket Location chart in the Installation Instruction Guidelines or contact Intralox Customer Service for lockdown location.

- Provides high-strength fingers combined with a low-friction backplate.
- Low-friction backplate is permanently attached to the two high-strength finger
- Eliminates product transfer and tipping problems. The 18 fingers extend between the belt ribs, allowing smooth, continuous product flow as the belt engages the
- Easily installed on the conveyor frame with supplied shoulder bolts. Caps snap easily into place over the bolts, keeping foreign materials out of the slots.
- The extended backplate has three attachment slots. Mounting hardware is sold separately and includes stainless steel oval washers and bolts. Plastic bolt covers are also included.

	Dim	ensional	Requirements for Finger Transfer Plate Installation
	Two-N	laterial	Two-material glass handling finger transfer plate shown
	in	mm	· · · · · · · · · · · · · · · · · · ·
F	3.50	89	г Н — ¬
G	0.31	8	2.25" (57 mm)
Н	9.56	243	
l	5.91	150	<u> </u>
J	3.00	76	!
K	1.45	37	1.5" (38 mm)
L	5.50	140	(38 mm)
Spacing at ambient		alox PP	
temperature	5.98	151.9	<u>, </u>
			1 Spacing 2 0.5 in (13 mm) Radius (leading edge of frame member) 3 Frame member

		•	Self-Clearing Finger T
Availab	le Width	No. of	Available Materials
in	mm	Fingers	Available iviaterials
6	152	18	Glass-filled thermoplastic

- Consists of a finger transfer plate and a transfer edge belt that are designed to work together.
- · Molded with robust tracking tabs for belt support in heavy sideloading conditions.

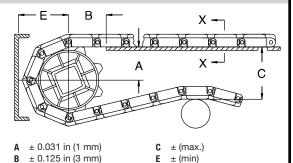
- Flat, smooth top surface provides excellent lateral movement of containers.
- Fully flush edges, headed rod retention system, and nylon rods for superior wear resistance.
- Eliminates the need for a sweeper bar, a pusher arm, or wide transfer plates. Transfers are smooth and 100% self-clearing, making right angle transfers possible for all container types.
- Ideal for warmer/cooler applications with frequent product changeovers.
- Bi-directional system allows same transfer belt use for both lefthand and right-hand transfers.
- · Compatible with any series and style of Intralox belt on the discharge and infeed conveyors.
- Capable of transferring product to and from Intralox Series 400, Series 1200, and Series 1900 Raised Rib belts.
- Robust design for durability in tough, glass applications.
- Easily installed and secured to mounting plates of any thickness with stainless steel bolts and oval washers that allow movement with belt expansion and contraction.
- Stainless steel hardware is sold separately.

ransfer Plates¹

Dimen	sional F	Require	ments for Self-Clearing Finger Transfer Plate Installations ²
	Self-C	learing	- H ──
	in	mm	1.75"
F	5.25	133.4	1.75" (44.5 mm)
G	1.15	29.2	
Н	8.05	204.5	
1	5.93	150.6	
J	2.92	74.2	37.1 mm U
K	1.51	38.4	
L	2.71	68.8	
			G (15.0 mm) 2
Spacing at ambie	nt temperatu		
PP	5.98 in	151.9 mm	1 Spacing 2 Frame Member

¹ Licensed under Rexnord U.S. Patent Nos. 7,314,130 and 7,448,490

² Licensed under Rexnord U.S. Patent Nos. 7,314,130 and 7,448,490



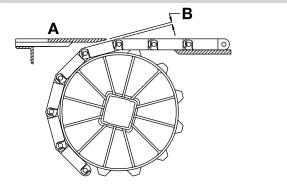
Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in anv design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see Basic Conveyor Frame Requirements.

SERIES 1900

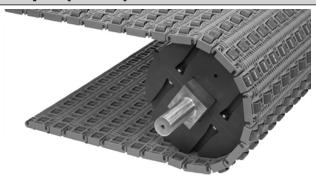

Sp	rocket Des	scription	Α	A B C					E		
Pitch D	Diameter	No. Teeth	Range (Bottor	n to Top)	in	mm	in	mm	in	mm	
in	mm	No. Teetii	in	mm	""	111111	""	111111	""	111111	
			Serie	es 1900 Raised	Rib						
6.7	170	10	2.69-2.85	68-72	2.82	72	7.08	180	4.29	109	
10.0	254	15	4.37-4.48	111-114	3.52	89	10.33	262	5.91	150	
10.6	269	16	4.71-4.81	120-122	3.65	93	11	279	6.25	159	

Dead Plate Gap

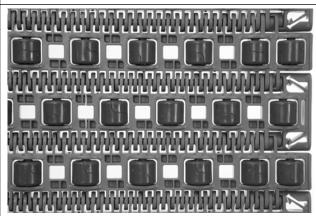
A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

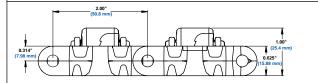
When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.



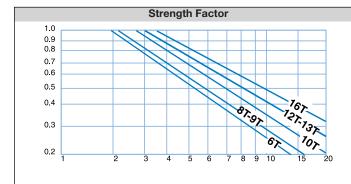
- A Top surface of dead plate
- B Dead plate gap


	Sprocket Description		Ga	p
Pitch D	iameter	No. Teeth	in	mm
in	mm	No. Teetii	""	
6.7	170	10	0.164	4.2
10.0	254	15	0.109	2.8
10.6	269	16	0.102	2.6



	Transve	rse Rolle
	in	mm
Pitch	2.00	50.8
Minimum Width	8	203
Width Increments	2.00	50.8
Opening Sizes (approx.)	0.43 x 0.53	10.9 x 13.5
Open Area	17.8	3%
Hinge Style	Ор	en
Drive Method	Cer	iter
Rod Retention; Rod Type	Barn door;	unheaded

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Uses acetal rollers with plastic axles.
- Designed for 90-degree transfers.
- Sprockets have large lug teeth.
- S4400 alternating tooth, glass-filled split sprockets are recommended.
- Robust design offers excellent belt and sprocket durability, especially in tough, material-handling applications.
- Contact Intralox Customer Service for detailed conveyor design guidelines.
- Adjust belt length in 4 in (10.16 cm), two-row increments.
- Roller diameter: 0.95 in (24.1 mm).
- Roller length: 0.825 in (20.9 mm).
- Standard roller indent: 0.26 in (6.6 mm).
- Roller spacing: 2 in (50.8 mm), alternating.



		Belt Data					
Belt material	Standard rod material Ø 0.240 in (6.1 mm)	Straight be	elt strength		ture range nuous)	Belt w	eight
	0.240 III (0.1 11111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
Polypropylene	Nylon	2200	3270	34 to 200	1 to 93	2.25	10.985

		Sprocket ar	nd Support Quantity Refere	nce
Belt Wid	th Range ¹	Minimum Number of	W	earstrips
in	mm	Sprockets Per Shaft ²	Carryway	Returnway
10-14	254-356	2	3	2
16-18	406-457	3	3	3
20-24	508-610	3	4	3
26	660	4	4	3
28-32	711-813	4	5	3
34-36	864-914	5	5	4
38-42	965-1067	5	6	4
44	1118	6	6	5
46-50	1168-1270	6	7	5
52-54	1321-1372	7	7	5
56-60	1422-1524	7	8	6
62	1575	8	8	6
64-68	1626-1727	8	9	6
70-72	1778-1829	9	9	6
74-78	1879-1981	9	10	7
80	2032	10	10	7
Maximum 9	in (229 mm) ce	enterline spacing, minimum	Maximum 9 in (229 mm) centerline	Maximum returnway spacing 12 in (304.8
	indent from	flush edge	spacing	mm)

Sprocket Spacing as a Function of Belt Strength Utilized 9.0 8.0 7.0 6.0 150 В 5.0 4.0 100 3.0 2.0 10% 20% 30% 40% 50% 60% 70% Percentage of allowable belt strength utilized

Speed/length ratio (V/L)

Divide belt speed (V) by the shaft centerline distance (L). Strength Factor is found at intersection of the speed/length ratio and the appropriate sprocket line. See *Belt Selection Instructions* for more information.

V = ft/min (m/min); T = number of teeth; L = ft (m)

- A Sprocket spacing, in
- B Sprocket spacing, mm

Solid line: Square bore sprockets **Dashed line:** Round bore sprockets

			(Glass	Fille	d Nylo	n Alter	nating	Tooth	Split S
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A ⁻	vailable B	ore Sizes	S
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric
(Chordal	Dia. in	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)		mm	in	mm	in	mm	in	in	mm	mm
10	6.5	165	6.7	170	1.9	48		1.5 2.5		40
(4.89%)										60
12	7.8	198	8.0	198	1.9	48		1.5		40
(3.41%)								2.5		60
16	10.3	262	10.5	267	1.9	48		1.5		40
(1.92%)								2.5		60

¹ If belt width exceeds a number listed in the table, see the sprocket and support material minimums for the next larger width range. Belts are available in 2.00 in (51 mm) increments beginning with minimum width of 10 in (254 mm). If the actual width is critical, contact Intralox Customer Service.

 $^{^{\}rm 2}$ This number is a minimum. Heavy-load applications can require additional sprockets.

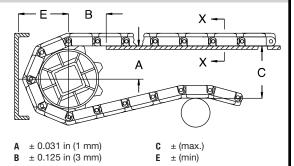
³ Contact Intralox Customer Service for lead times.

					Nylor	n Alter	nating	Tooth	Split S	Sprock
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable B	ore Size	S
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in	in	mm	mm
8	5.3	135	5.5	140	1.9	48		1.5		40
(7.61%)										
16	10.3	262	10.5	267	1.9	48		3.5		
(1.92%)										
(110270)										

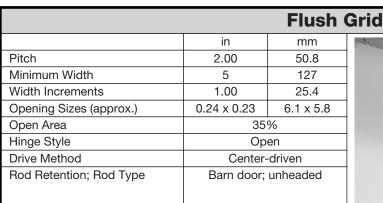
					N	ylon A	lternat	ing Too	oth Spr	ocket ²	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Α	vailable E	Bore Sizes	S	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	
Action)	in	mm	in	mm	in	mm	in	in	mm	mm	
6	4.0	102	4.2	107	1.9	48		1.5		40	
(13.40%)											14

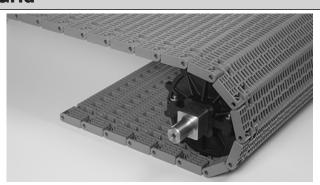
				GI	ass Fi	lled N	ylon Al	ternati	ng Too	th Spr	ocket ³
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Α	vailable E	Bore Size	S	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	
Action)	in	mm	in	mm	in	mm	in	in	mm	mm	
10	6.5	165	6.5	165	2.0	51		1.5		40	
(4.89%)								2.5		60	4
12	7.8	198	7.8	198	2	51		1.5		40	
(3.41%)								2.5		60	-
16	10.3	262	10.4	264	2	51		2.5		60	
(1.92%)											

Contact Intralox Customer Service for lead times.
 Contact Customer Service for lead times.

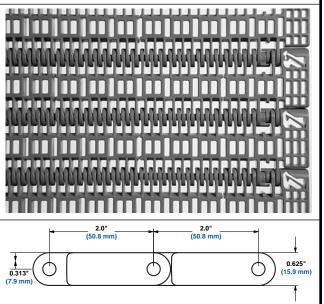

³ Contact Customer Service for lead times.

Conveyor Frame Dimensions

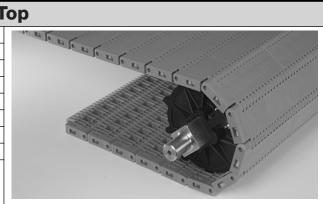

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in any design.


For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

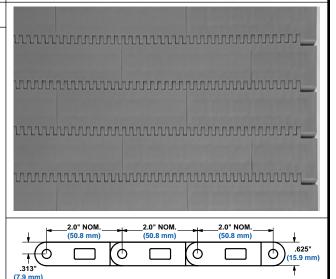
For complete descriptions of the dimensions, see Basic Conveyor Frame Requirements.



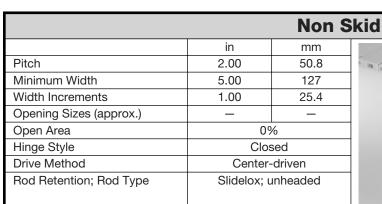
Sp	rocket De	scription	Α		E	3	()		E
Pitch D	Diameter	No. Teeth	Range (Botton	n to Top)	in	mm	in	mm	in	mm
in	mm	No. reeur	in	mm	""	111111	""	111111	""	111111
4.0	102	6	1.43-1.70	36-43	1.85	47	4.40	112	2.76	70
5.3	135	8	2.12-2.32	54-59	2.24	57	5.64	143	3.38	86
6.5	165	10	2.79-2.95	71-75	2.39	61	6.90	175	4.01	102
7.8	198	12	3.45-3.58	88-91	2.64	67	8.16	207	4.64	118
10.3	262	16	4.75-4.85	121-123	3.10	79	10.70	272	5.91	150

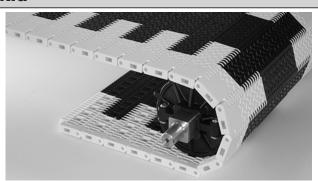


- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Opening size prevents 0.25 in (6.35 mm) or larger bolt from falling through the belt surface.
- Smooth upper surface and straightforward design provide free product movement.
- Sprockets have large lug teeth.

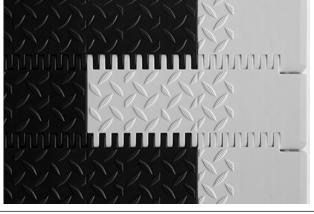


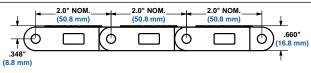
		Belt Data					
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt st	rength		ture range nuous)	Belt w	eight /
	0.24 1 (6.1 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
Polypropylene	Nylon	2400	3572	34 to 220	1 to 104	1.54	7.52
Polypropylene	Polypropylene	2200	3274	34 to 220	1 to 104	1.54	7.52

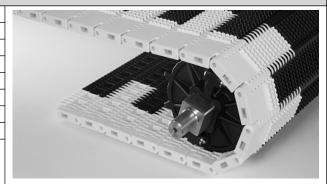

		Flat 1
	in	mm
Pitch	2.00	50.8
Minimum Width	5.00	127
Width Increments	1.00	25.4
Opening Sizes (approx.)	_	_
Open Area	09	%
Hinge Style	Clos	sed
Drive Method	Center-	-driven
Rod Retention; Rod Type	Slidelox; ι	ınheaded

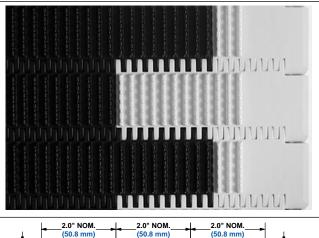


- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Smooth, closed upper surface.
- Fully flush edges.
- Available with yellow edges. Staggered yellow edges make it easy to distinguish the moving belt from the stationary floor.
- Slidelox are glass-reinforced polypropylene.



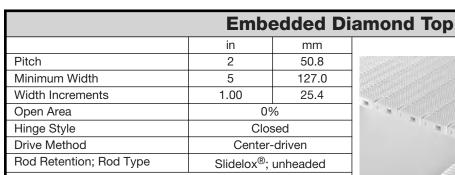

		Belt Data					
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt st	rength		ure range nuous)	Belt w	/eight
	0.24 1 (0.1 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
Acetal	Nylon	4400	6548	-50 to 200	-46 to 93	3.07	14.96
HSEC acetal	Nylon	4100	6101	-50 to 200	-46 to 93	3.08	15.04
AC/EC	Nylon	4400	6548	-50 to 200	-46 to 93	3.08	15.04
Polypropylene	Nylon	2900	4316	34 to 220	1 to 104	1.97	9.62
Easy Release Traceable polypropylene	Nylon	2500	3720	34 to 220	1 to 104	2.26	11.03

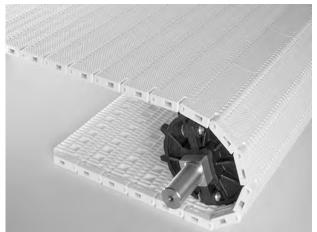

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- · Fully flush edges.
- Edges have Flat Top surface with no tread pattern.
- Slidelox are glass-reinforced polypropylene.
- Diamond tread pattern provides a non-skid walking surface to increase safety.
- Available with yellow edges. Staggered yellow edges make it easy to distinguish the moving belt from the stationary
- Flat Top indent: 2.0 in (50 mm) from the belt edge.

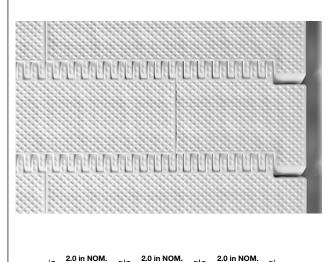


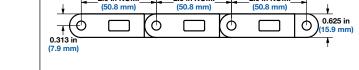
		Belt Data					
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt st	rength		ture range nuous)	Belt w	/eight
	0.24 1 (6.1 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
Acetal	Nylon	4400	6548	-50 to 200	-46 to 93	3.09	15.09
HSEC acetal	Nylon	4100	6101	-50 to 200	-46 to 93	3.10	15.14
AC/EC	Nylon	4400	6548	-50 to 200	-46 to 93	3.10	15.14
Polypropylene	Nylon	2900	4316	34 to 220	1 to 104	1.98	9.67
FR Anti-Static	Nylon	2000	2976	-50 to 150	-46 to 66	3.00	14.65

	No	n Skid R	aised Rib
	in	mm	
Pitch	2.00	50.8	4 0 3
Minimum Width	5.00	127	
Width Increments	1.00	25.4	
Opening Sizes (approx.)	_	_	
Open Area	09	%	
Hinge Style	Clos	sed	
Drive Method	Center-	-driven	
Rod Retention; Rod Type	Slidelox; ι	ınheaded	
	1		

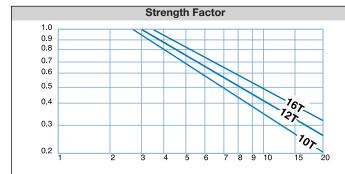

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- · Fully flush edges.
- Edges have Flat Top surface with no tread pattern.
- Slidelox are glass-reinforced polypropylene.
- Non-skid tread pattern increases safety.
- Available with yellow edges. Staggered yellow edges make it easy to distinguish the moving belt from the stationary floor.
- Finger transfer plates are available. Finger transfer plates remove debris from the belt surface.
- Flat Top indent: 2.0 in (50 mm) from the belt edge.

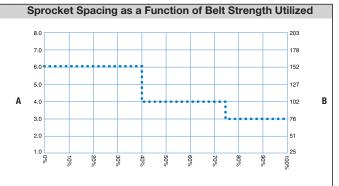

Φ`


(21.0 mm)


		Belt Data					
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Belt st	rength		ture range nuous)	Belt w	veight
	0.24 1 (6.1 11 11)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
Acetal	Nylon	4400	6548	-50 to 200	-46 to 93	3.39	16.55
HSEC acetal	Nylon	4100	6101	-50 to 200	-46 to 93	3.39	16.55
AC/FC	Nylon	4400	6548	-50 to 200	-46 to 93	3 39	16.55

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- · Fully flush edges.
- Slidelox is glass-reinforced polypropylene.
- The Embedded Diamond Top pattern allows sticky materials to release easily from the belt.




	Belt	Data					
Belt Material	Standard Rod Material Ø 0.24 in (6.1 mm)	Belt St	rength	Temperati (contir	ure Range nuous)	Belt W	/eight
	9 0.24 (11 (0.1 11(11))	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²
Polypropylene	Nylon	2900	4320	34 to 200	1 to 93	1.97	9.62

		Sprocket ar	nd Support Quantity Referen	nce
Belt Wic	th Range1	Minimum Number of	W	earstrips
in	mm	Sprockets Per Shaft ²	Carryway	Returnway
2	51	1	2	2
4	102	1	2	2
6	152	2	2	2
7	178	2	2	2
8	203	2	2	2
10	254	2	3	2
12	305	3	3	2
14	356	3	3	3
15	381	3	3	3
16	406	3	3	3
18	457	3	3	3
20	508	5	4	3
24	610	5	4	3
30	762	5	5	4
32	813	7	5	4
36	914	7	5	4
42	1087	7	6	5
48	1219	9	7	5
54	1372	9	7	6
60	1524	11	8	6
72	1829	13	9	7
84	2134	15	11	8
96	2438	17	12	9
120	3048	21	15	11
144	3658	25	17	13
For other w	ridths, use an o	dd number of sprockets at	Maximum 6 in (152 mm) centerline	Maximum 12 in (305 mm) centerline
Maxim	um 6 in (152 mi	m) centerline spacing.3	spacing	spacing

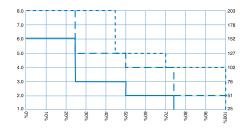
Speed/length ratio (V/L)
Divide belt speed (V) by the shaft centerline distance (L). Strength Factor is found at intersection of the speed/length ratio and the appropriate sprocket line. See *Belt Selection Instructions* for more information.

V = ft/min (m/min); T = number of teeth; L = ft (m)

Percentage of allowable belt strength utilized

- A Sprocket spacing, in
- B Sprocket spacing, mm

Dashed line: Flat Top, Non Skid, Non Skid Raised Rib square bore


¹ If belt width exceeds a number listed in the table, see the sprocket and support material minimums for the next larger width range. Belts are available in 1.00 in (25.4 mm) increments beginning with minimum width of 5 in (127 mm). If the actual width is critical, contact Intralox Customer Service.

² This number is a minimum. Heavy-load applications can require additional sprockets.

³ Lock down the center sprocket. With only two sprockets, fix the sprocket on the drive journal side only. For lockdown location, see Retainer Rings/Center Sprocket Offset.

Sprocket Spacing as a Function of Belt Strength Utilized

Sprocket spacing, in

Sprocket spacing, mm

SERIES 4500

Percentage of allowable belt strength utilized

Solid line: Flush Grid-Round Bore Long dash line: Flush Grid-Square Bore Short dash line: Flush Grid-Dual Tooth

			Е	ndura	alox P	olypro	pylene	Comp	osite \$	Split S
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable B	ore Size	S
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in	in	mm	mm
10	6.5	165	6.7	170	1.5	38		1.5		40
(4.89%)								2.5		60
12	7.8	198	8	203	1.5	38		1.5		40
(3.41%)								2.5		60
16	10.3	262	10.5	267	1.5	38	2.5 ³	2.5 ³	60 ³	60 ³
(1.92%)							3.5 ³		90 ³	

					GI	ass Fi	lled Ny	lon Sp	lit Spr	ockets	4
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A۱	/ailable B	ore Size	S	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S	S.	Me	tric	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	
Action)	in	mm	in	mm	in	mm	in	in	mm	mm	
10	6.5	165	6.7	170	1.45	37		1.5⁵		40 ⁵	
(4.89%)								2.5		60	
12	7.8	198	8	203	1.45	37		1.5 ⁵		40 ⁵	
(3.41%)								2.5		60	
								3.5		90	
16	10.3	262	10.5	267	1.45	37		2.5		60	
(1.92%)								3.5		90	

¹ Contact Intralox Customer Service for lead times.

² Hardware made from 316 stainless steel

³ Bores are over-sized

⁴ Contact Intralox Customer Service for lead times.

 $^{^{\}rm 5}$ 1.5 in and 40-mm bores have a hub width of 1.95 in (50 mm).

						Ny	ylon Sp	lit Spr	ockets	S ¹
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable B	ore Size	S
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in	in	mm	mm
16	10.3	262	10.5	267	1.9	38		1.5		40
(1.92%)										

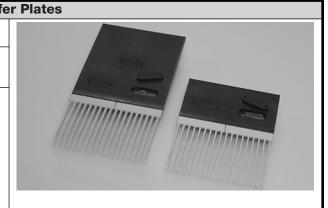
						Glass	Filled	Nylon	Sproc	kets²
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	ore Size	S
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in	in	mm	mm
10	6.5	165	6.5	165	2	51		1.5		40
(4.89%)								2.5		60
12	7.8	198	7.8	198	2	51		1.5		40
(3.41%)								2.5		60

		E	ndura	lox P	olypro	pylen	e Com	posite	Dual 1	Tooth S
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable B	ore Size	s
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in	in	mm	mm
16	10.3	262	10.5	267	1.5	38		3.55		903
(1.92%)										

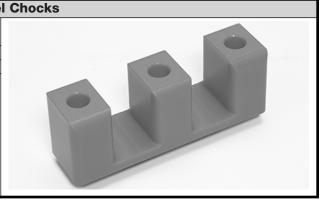
¹ Contact Intralox Customer Service for lead times.

² Contact Intralox Customer Service for lead times.

³ Contact Intralox Customer Service for lead times.


⁴ Hardware made from 316 stainless steel

⁵ Bores are over-sized


			Finger Transf
Available	e Widths	Number of	Available Materials
in	mm	Fingers	Available Materials
6	152	18	Glass-filled
			thermoplastic fingers,
			acetal back plate

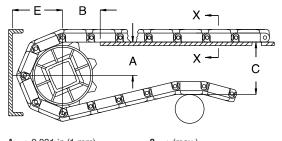
- For use with Series 4500 Non Skid Raised Rib belt styles.
- Fingers extend between the ribs to prevent hardware from dropping off the end of the conveyor.
- Plastic shoulder bolts and bolt covers are included for installing the standard two-material finger transfer plates.
- Easily installed on the conveyor frame.
- Available in two different configurations. The standard configuration features long fingers with a short back plate. Standard Extended Back configuration features long fingers with an extended back plate. The short back plate has two attachment slots and the extended back plate has three attachment slots.

				Flat Top Whee
Availabl	Available Height		le Width	Available Materials
in	mm	in	mm	Available iviaterials
1.6	41	5	127	UHMW
1.97	50	5	127	UHMW
		1.0. 1 0 100	O FLAT TAR	and the second second

- Fasteners and modified S4500 Flat Top modules are required.
- Fastener torque specification: 40-45 in/lb (4.5-5 N/m).
- Minimum indent from the edge of the belt without wheel chocks: 2.0 in (50 mm).

	Insert Nut
Available Base Belt Style - Material	Available Insert Nut
	Sizes
Flat Top - Acetal	6 mm –1 mm
	8 mm–1.25 mm
	6 mm –1 mm
Flat Top - Polypropylene	8 mm–1.25 mm

- Insert Nuts allow easy attachment of fixtures to the belt.
- Square insert nuts are provided. The square flange ensures that the insert nut stays in place when the bolt is tightened or loosened.
- Ensure that attachments connected to more than one row do not prohibit belt rotation around the sprockets.
- Do not locate sprockets in-line with the insert nuts. Contact Intralox Customer Service for sprocket and insert nut placement.
- Fasteners and modified Series 4500 Flat Top modules are required.
- Fastener torque specification: 40-45 in-lb (4.5-5.0 N-m).
- Minimum indent from the belt edge: 2.5 in (63 mm)
- Minimum distance between nuts along the length of the belt: 1.0 in (25 mm)
- Contact Intralox Customer Service for assistance with insert nut placement.



Conveyor Frame Dimensions

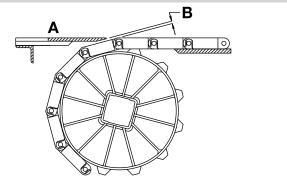
Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see Basic Conveyor Frame Requirements.

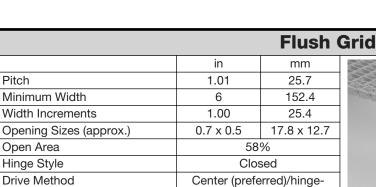
A ± 0.031 in (1 mm) **B** ± 0.125 in (3 mm) C ± (max.) E ± (min)

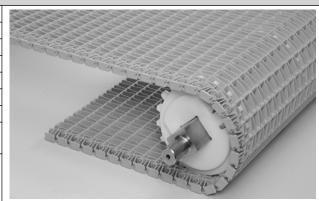
Sp	Sprocket Description		Α	E	3	()	E			
Pitch D	Diameter	No Teeth	No. Teeth Range (Bottom to Top)		in	mm	in	mm	in	mm	
in	mm	No. reeur	in	mm	""	111111	""	111111			
	Series 2900 Flat Top, Flush Grid										
6.5	165	10	2.77-2.92	70-74	2.40	61	6.47	164	3.61	92	
7.8	198	12	3.46-3.59	88-91	2.63	67	7.80	198	4.28	109	
10.3	262	16	4.71-4.81	120-122	3.15	80	10.25	260	5.50	140	
	Series 2900 Non Skid										
6.5	165	10	2.77-2.92	70-74	2.40	61	6.56	167	3.70	94	
7.8	198	12	3.46-3.59	88-91	2.63	67	7.89	200	4.36	111	
10.3	262	16	4.71-4.81	120-122	3.15	80	10.34	263	5.59	142	
			Series 29	00 Non Skid Ra	ised Rib						
6.5	165	10	2.77-2.92	70-74	2.40	61	6.67	169	3.81	97	
7.8	198	12	3.46-3.59	88-91	2.63	67	8.00	203	4.48	114	
10.3	262	16	4.71-4.81	120-122	3.15	80	10.45	265	5.70	145	



Dead Plate Gap

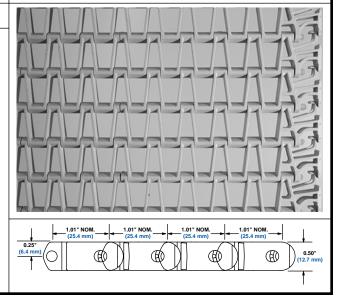
A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.


When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.


Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.

- A Top surface of dead plate
- B Dead plate gap

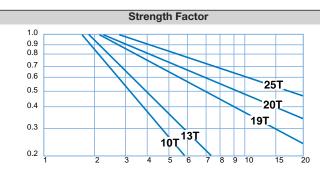
	Sprocket Description	Gap			
Pitch D	iameter	No. Teeth	in	mm	
in	mm	No. reeur	""		
6.4	163	10	0.160	4.1	
7.8	198	12	0.130	3.3	
10.1	257	16	0.100	2.5	



Rod Retention; Rod Type

driven

Occluded edge; unheaded


- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Open surface enhances spray-through cleaning performance and airflow cooling performance, depending on the application.
- PVDF is a polymer material proven for long-term use in washer environments.
- Easy to retrofit from existing steel belting with virtually no conveyor changes.
- Available with split steel sprockets for longer sprocket life and easier replacement.

		Belt Data						
Belt material	Standard rod material Ø 0.18 in (4.6 mm)	Belt st	rength		ture range nuous)	Belt weight		
	0.18 111 (4.6 11111)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	
PVDF	PVDF	1000	1490	34 to 200	1 to 93	1.57	7.64	
Polypropylene	Polypropylene	750	1120	34 to 220	1 to 104	0.82	4.00	
Acetal	Polypropylene	900	1340	34 to 200	1 to 93	1.14	5.57	

Belt Wi	dth Range ¹	Minimum Number of	Wearstrips					
in	mm	Sprockets Per Shaft ²	Carryway	Returnway				
12	305	3	2	Minimum 3 in (76.2 mm) diameter rollers.				
24	610	6	4					
36	914	9	6					
48	1219	12	8					
60	1524	15	10					
72	1829	18	12					
84	2134	21	14					
96	2438	24	16					
		odd number of sprockets at						
Maxim	num 4 in (102 m	nm) centerline spacing.3						

Speed/length ratio (V/L)

Divide belt speed (V) by the shaft centerline distance (L). Strength Factor is found at intersection of the speed/length ratio and the appropriate sprocket line. See *Belt Selection Instructions* for more information.

V = ft/min (m/min); T = number of teeth; L = ft (m)

Percentage of allowable belt strength utilized

- A Sprocket spacing, in
- B Sprocket spacing, mm

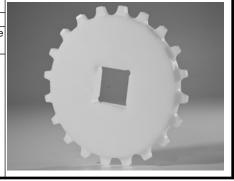
	Split Metal Sprocket⁴									
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Av	ailable B	ore Sizes	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.		Metr	ic
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round in	Square	Round	Square
Action)	in	mm	in	mm	in	mm		in	mm	mm
20	6.5	165	6.5	165	1.7	43	2-3/16	2.5		
(1.23%)							2-7/16			
							2-11/16			
							3-7/16			
25	8.1	206	8.1	206	1.7	43	2-7/16	2.5		
(0.8%)							2-11/16			
							3-7/16			

¹ If belt width exceeds a number listed in the table, see the sprocket and support material minimums for the next larger width range. Belts are available in 1.00 in (25.4 mm) increments beginning with minimum width of 6 in (152.4 mm). If the actual width is critical, contact Intralox Customer Service.

² This number is a minimum. Heavy-load applications can require additional sprockets.

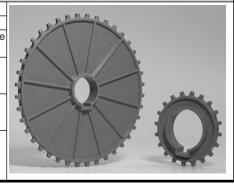
³ Lock down the center sprocket. With only two sprockets, fix the sprocket on the drive journal side only. See Center Sprocket Offset chart for lockdown location.

⁴ Contact Intralox Customer Service for lead times.

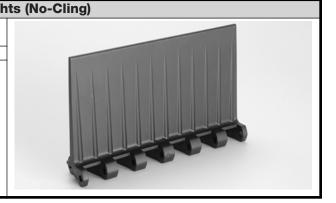


	UHMW Polyethylene Split Sprockets ¹									
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Av	ailable B	ore Sizes	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.		Metr	ic
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round in	Square	Round	Square
Action)	in	mm	in	mm	in	mm		in	mm	mm
40	12.9	328	13.0	330	1.48	38	2-7/16		60	
(0.31%)							2-11/16			
							3-7/16			
							0 77 10			

						N	lylon FD <i>A</i>	\ Split	Sprocke	ts²
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Av	ailable B	ore Sizes	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.		Metri)
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round in	Square	Round	Square
Action)	in	mm	in	mm	in	mm		in	mm	mm
13	4.2	107	4.2	107	1.48	38	1-1/4	1-1/2		40
(2.90%)										
19	6.1	155	6.1	155	1.48	38	1-1/4	1-1/2		40
(1.38%)										


							Aceta	al Spro	ckets ³	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Available Bore Sizes			
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.		Metri	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round in	Square	Round	Square
Action)	in	mm	in	mm	in	mm		in	mm	mm
20	6.5	165	6.5	165	0.75	19		1.5		
(1.23%)										

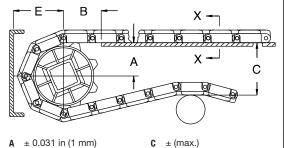
Contact Intralox Customer Service for lead times.
 Contact Intralox Customer Service for lead times.


³ Contact Intralox Customer Service for lead times.

			E	Endur	ralox	Polypro	pylene	Compos	ite Spi	rocket1
Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	А	vailable E			
Pitch	Pitch	Outer	Outer	Hub	Hub	U.S		Metri	С	S I II II
Dia.	Dia.	Dia.	Dia.	Width	Width	Round in	Square	Round	Square	8/
in	mm	in	mm	in	mm		in	mm	mm	5/
6.5	165	6.5	165	1.48	38	2-7/16		90		8
						3-7/16				
8.1	206	8.1	206	1.48	38	2-7/16		90		1
						3-7/16				1/19
12.9	328	13.0	330	1.48	38	2-11/16		60		2//
										PARRA
	Pitch Dia. in 6.5	Pitch Dia. Dia. in mm 6.5 165	Pitch Dia. Dia. in mm in 6.5 165 6.5 8.1 206 8.1	Nom. Nom. Nom. Nom. Pitch Pitch Outer Outer Dia. Dia. Dia. Dia. in mm in mm 6.5 165 6.5 165 8.1 206 8.1 206	Nom. 10.0 10.0 10.0 <th< td=""><td>Nom. Nom. <th< td=""><td>Nom. Nom. Nom. Nom. Nom. Nom. A Pitch Dia. in mm Width in mm Width in mm Round in mm 6.5 165 6.5 165 1.48 38 2-7/16 8.1 206 8.1 206 1.48 38 2-7/16 3-7/16</td><td> Nom. Nom. Nom. Outer Dia. in mm in mm in mm nom. Nom. Nom. Available E U.S. Round in Square in Square in Nom. Nom. Hub Hub U.S. Round in Square in Nom. Nom. Nom. Hub U.S. Round in Square in Nom. No</td><td>Nom. Pitch Dia. in mm Nom. Hub Hub Hub in mm Nom. Hub Hub Hub Hub Midth in mm Nom. Dia. Width in mm Round in Square in mm Round in mm in mm R</td><td>Pitch Dia. in mm Pitch Dia. in mm Outer Dia. in mm Outer Dia. in mm Hub In mm Hub Width In mm Square In mm Round In In mm Hub Square In In In In In mm Hub Width In In</td></th<></td></th<>	Nom. Nom. <th< td=""><td>Nom. Nom. Nom. Nom. Nom. Nom. A Pitch Dia. in mm Width in mm Width in mm Round in mm 6.5 165 6.5 165 1.48 38 2-7/16 8.1 206 8.1 206 1.48 38 2-7/16 3-7/16</td><td> Nom. Nom. Nom. Outer Dia. in mm in mm in mm nom. Nom. Nom. Available E U.S. Round in Square in Square in Nom. Nom. Hub Hub U.S. Round in Square in Nom. Nom. Nom. Hub U.S. Round in Square in Nom. No</td><td>Nom. Pitch Dia. in mm Nom. Hub Hub Hub in mm Nom. Hub Hub Hub Hub Midth in mm Nom. Dia. Width in mm Round in Square in mm Round in mm in mm R</td><td>Pitch Dia. in mm Pitch Dia. in mm Outer Dia. in mm Outer Dia. in mm Hub In mm Hub Width In mm Square In mm Round In In mm Hub Square In In In In In mm Hub Width In In</td></th<>	Nom. Nom. Nom. Nom. Nom. Nom. A Pitch Dia. in mm Width in mm Width in mm Round in mm 6.5 165 6.5 165 1.48 38 2-7/16 8.1 206 8.1 206 1.48 38 2-7/16 3-7/16	Nom. Nom. Nom. Outer Dia. in mm in mm in mm nom. Nom. Nom. Available E U.S. Round in Square in Square in Nom. Nom. Hub Hub U.S. Round in Square in Nom. Nom. Nom. Hub U.S. Round in Square in Nom. No	Nom. Pitch Dia. in mm Nom. Hub Hub Hub in mm Nom. Hub Hub Hub Hub Midth in mm Nom. Dia. Width in mm Round in Square in mm Round in mm in mm R	Pitch Dia. in mm Pitch Dia. in mm Outer Dia. in mm Outer Dia. in mm Hub In mm Hub Width In mm Square In mm Round In In mm Hub Square In In In In In mm Hub Width In

		Flat Top Base Fligh			
Available F	light Height	Available Materials			
in mm		Available iviaterials			
3	76	Polypropylene, nylon			
No-Cling vertical ribs are on both sides of the flight.					

- Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.
- Flights can be cut down to custom heights. Minimum height: 0.25 in
- Minimum indent without sideguards: 2.0 in (50.8 mm).



Conveyor Frame Dimensions

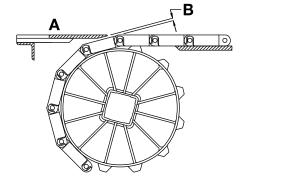
Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in

For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see *Basic Conveyor Frame Requirements*.

|--|

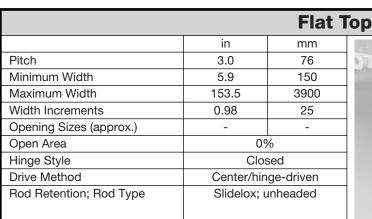
Sprocket Description			Α	В		С		E		
Pitch D	Diameter	No. Teeth	Range (Bottom to Top)		in	mm	in	mm	in	mm
in	mm	No. reetii	in	mm	""					
Series 9000 Flush Grid										
3.3	84	10	1.30-1.38	33-35	1.65	42	3.26	83	1.95	50
4.2	107	13	1.80-1.86	46-47	1.85	47	4.22	107	2.42	61
6.1	155	19	2.78-2.82	71-72	2.23	57	6.14	156	3.38	86
6.5	165	20	2.94-2.98	75-76	2.35	60	6.46	164	3.54	90
8.1	206	25	3.75-3.78	95-96	2.63	67	8.06	205	4.34	110

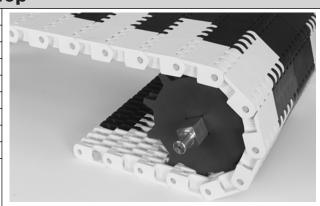


Dead Plate Gap

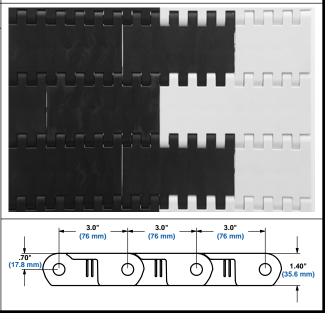
A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.


Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.

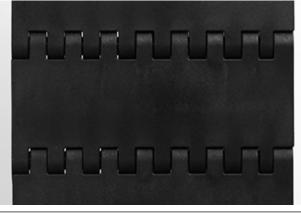


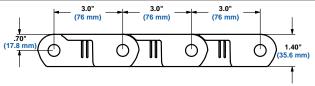
SERIES 9000


- A Top surface of dead plate
- B Dead plate gap

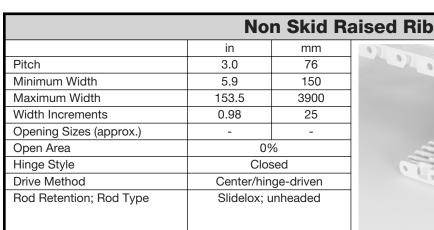
	Sprocket Description	Gap			
Pitch D	iameter	No. Teeth	in	mm	
in	mm	No. reetii	""	111111	
3.3	84	10	0.081	2.1	
4.2	107	13	0.061	1.5	
6.1	155	19	0.042	1.1	
6.5	164	20	0.040	1.0	
8.1	205	25	0.032	0.8	

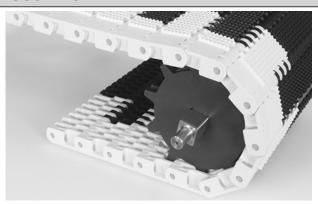
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Smooth, closed upper surface with fully flush edges.
- Slidelox are an acetal copolymer.
- Available with yellow edges. Staggered yellow edges make it easy to distinguish the moving belt from the stationary
- Available in high strength electrically conductive acetal, which has a surface resistivity of 10⁵ ohms per square.
- Wheel chock attachments are available.

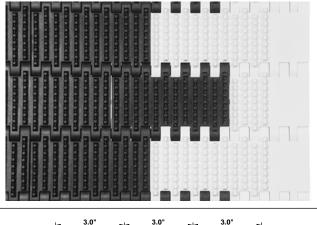

Belt Data								
Belt material	Standard rod material Ø 0.50 in (12.7 mm)	Belt st	rength		ture range nuous)	Belt weight		
	0.30 III (12.7 IIIIII)	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²	
Acetal	Nylon	10,000	14,882	-50 to 200	-46 to 93	6.36	31.05	
HS EC acetal	Nylon	8,000	11,905	-50 to 200	-46 to 93	6.36	31.05	

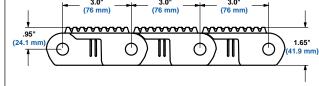


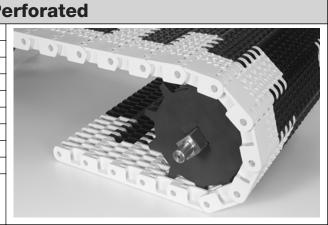
	Mole	d to Widt		
	in	mm		
Pitch	3.0	76		
Molded Widths	3.9	100		
Wolded Widths	7.9	200		
Opening Size (approximate)	-	-		
Open Area	0%			
Hinge Style	Closed			
Drive Method	Center/hinge-driven			
Rod Retention; Rod Type	Slidelox; unheaded			

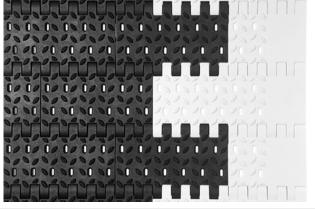


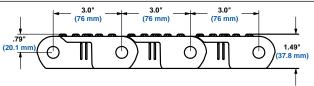

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Smooth, closed upper surface with fully flush edges.
- Available in high strength electrically conductive acetal, which has a surface resistivity of 10⁵ ohms per square.
- Slidelox are an acetal copolymer.




Belt Data									
Belt material	Belt Width		Standard rod material Ø 0.50 in (12.7 mm)	Belt strength		Temperature range (continuous)		Belt weight	
	in	mm	0.30 1 (12.7 11 11)	lb	kg	°F	°C	lb/ft	kg/m
Acetal	3.9	100	Nylon	2,500	1,134	-50 to 200	-46 to 93	2.08	3.10
Acetal	7.9	200	Nylon	5,800	2,631	-50 to 200	-46 to 93	4.15	6.18
HS EC acetal	3.9	100	Nylon	2,000	907	-50 to 200	-46 to 93	2.08	3.10
HS EC acetal	7.9	200	Nylon	4,700	2,132	-50 to 200	-46 to 93	4.15	6.18

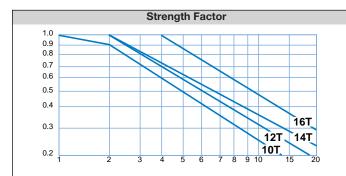

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- · Closed upper surface with fully flush edges.
- Available in high strength electrically conductive acetal, which has a surface resistivity of 10⁵ ohms per square.
- Available with yellow edges. Staggered yellow edges make it easy to distinguish the moving belt from the stationary floor.
- Edges have Flat Top surface, with no tread pattern.
- Slidelox are an acetal copolymer.
- Tread pattern provides a non-skid walking surface to increase safety.
- Wheel chocks are available. Use Series 10000 Flat Top modules to mount the wheel chocks.
- Finger plates are available to shed objects from the belt surface.
- Flat Top indent: 2.0 in (50 mm) from belt edge.




Belt Data								
Belt material	Standard rod material Ø 0.50 in (12.7 mm)	Belt strength			ure range nuous)	Belt weight		
	0.30 1 (12.7 11 11)	lb./ft.	kg/m	°F	°C	lb./ft. ²	kg/m²	
HS EC acetal	Nylon	8,000	11,905	-50 to 200	-46 to 93	6.85	33.44	

No	n Skid P
in	mm
3.00	76.2
5.9	150
153.5	3900
.98	25
0.10 x 0.31	2.8 x 7.9
39	6
Clos	sed
Center/hin	ge-driven
Slidelox; ι	ınheaded
	in 3.00 5.9 153.5 .98 0.10 x 0.31 39 Clos

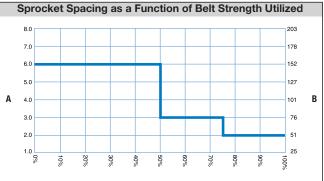
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Fully flush edges have a Flat Top surface with no tread pattern.
- Open slots improve drainage. Diamond tread pattern provides a non-skid walking surface to increase safety.
- Available with yellow edges. Staggered yellow edges make it easy to distinguish the moving belt from the stationary floor.
- Slidelox are an acetal copolymer.
- Available in high strength electrically conductive acetal, which has a surface resistivity of 10⁵ ohms per square.
- Wheel chocks are available. Use Series 10000 Flat Top modules to mount the wheel chocks.
- Flat Top indent: 1.97 in (50.0 mm) from edge of belt.



Belt Data									
Belt material	Standard rod material Ø 0.50 in (12.7 mm)	Belt strength		Temperature range (continuous)		Belt weight			
	0.50 iii (12.7 11iiii)	lb./ft.	kg/m	°F	°C	lb./ft. ²	kg/m²		
Acetal Nylon		10,000	14,882	-50 to 200	-46 to 93	6.48	31.64		
HSEC acetal	Nylon	8,000	11,905	-50 to 200	-46 to 93	6.48	31.64		

Sprocket and Support Quantity Reference									
Belt Wid	th Range ¹	Minimum Number of	Wearstrips						
in	mm	Sprockets Per Shaft ²	Carryway	Returnway					
3	100	1	2	2					
5.9	150	1	2	2					
7.9	200	2	2	2					
9.8	250	2	3	2					
11.9	300	3	3	2					
13.8	350	3	3	3					
15.7	400	3	3	3					
17.7	450	3	3	3					
19.7	500	3	4	3					
23.6	600	5	4	3					
29.5	750	5	5	4					
31.5	800	5	5	4					
35.4	900	7	5	4					
41.3	1050	7	6	5					
47.2	1200	7	7	5					
53.1	1350	9	7	6					
59.1	1500	9	8	6					
70.9	1800	13	9	7					
82.7	2100	21	11	8					
94.5	2400	23	12	9					
118.1	3000	29	15	11					
143.7	3650	35	17	13					
145.7	3700	37	18	14					
147.6	3750	37	18	14					
149.6	3800	37	18	14					
151.6	3850	37	18	14					
153.5	3900	41	19	14					
or other w	idths, use an	odd number of sprockets at	Maximum 6 in (152 mm) centerline	Maximum 12 in (305 mm) centerline					

spacing



maximum 6 in (152 mm) centerline spacing.3

Speed/length ratio (V/L)

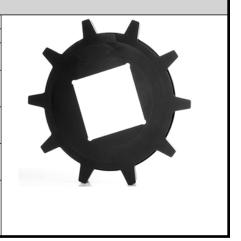
Divide belt speed (V) by the shaft centerline distance (L). Strength Factor is found at intersection of the speed/length ratio and the appropriate sprocket line. See Belt Selection Instructions for more information.

V = ft/min (m/min); T = number of teeth; L = ft (m)

spacing

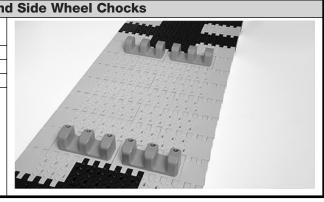
SERIES 10000

Percentage of allowable belt strength utilized


- A Sprocket spacing, in
- B Sprocket spacing, mm

¹ If belt width exceeds a number listed in the table, see the sprocket and support material minimums for the next larger width range. Belts are available in 1.97 in (50 mm) increments beginning with a minimum width of 3.94 in (100 mm). If the actual width is critical, contact Intralox Customer Service.

² This number is a minimum. Heavy-load applications can require additional sprockets. Sprockets require a maximum 5.91 in (150 mm) centerline spacing.


³ Lock down the center sprocket. With only two sprockets, fix the sprocket on the drive journal side only. For lockdown location, see Retainer Rings/Center Sprocket Offset.

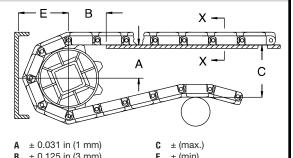
							Nyloi	ո Spro	ckets1	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Av	ailable B	ore Sizes	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.		Metri	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round in	Square	Round	Square
Action)	in	mm	in	mm	in	mm		in	mm	mm
10	9.9	251	9.7	246	1.5	38		3.5		90
(4.70%)										
12	11.8	300	11.7	297	1.5	38		3.5		90
(3.29%)										
14	13.7	348	13.6	345	1.5	38		3.5		90
(2.43%)										
16	15.7	399	15.6	396	1.5	38		3.5	100	90
(1.84%)									120	
									140	

	Flat Top Wheel Chocks an										
Availabl	e Height	Availabl	e Width	Available Materials							
in	mm	in	mm	Available Materials							
0.8	20	1.5	37	Nylon							
1.6	40	4.9	125	Nylon							
2	50	4.9	125	Nylon							
 Fasten 	Fasteners and modified S10000 Flat Top modules are required										

- Minimum indent without wheel chocks is 2.0 in (50 mm).

	Insert Nu
Available Base Belt Style - Material	Available Insert Nut
	Sizes
Flat Top - Acetal	6 mm–1 mm
	8 mm–1.25 mm

- Insert Nuts easily allow the attachment of fixtures to the belt.
- Insert nuts are square. The square flange ensures that the insert nut stays in place when the bolt is tightened or loosened.
- Ensure that attachments connected to more than one row do not prohibit belt rotation around the sprockets.
- All nut placement dimensions are referenced from the edge of the belt when placing an order. Contact Intralox Customer Service for nut location options available for your individual belt specifications.
- Sprockets can be located in-line with insert nuts if a 0.187 (4.75 mm) clearance is maintained. Contact Intralox Customer Service for the appropriate bolt length to fit the application.
- The fastener torque specification: 40-45 in lb (4.5-5.0 N-m).
- Minimal indent from the edge of the belt: 1.22 in (31 mm)
- Minimal distance between nuts across the width of the belt 0.492 in (12.5 mm)
- Spacing along the length of the belt: 3 in (76 mm) increments.


SERIES 10000

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in any design.

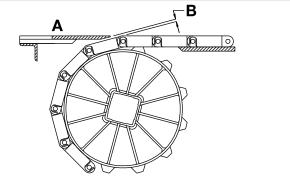
For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see *Basic Conveyor Frame Requirements*.

± 0.125 in (3 mm)

E ± (min)

Sp	Sprocket Description		ocket Description A		E	3				E
Pitch D	iameter	No. Teeth	Range (Botton	n to Top)	in mm		in	mm	in	mm
in	mm	No. reeur	in	mm	""		""	111111	""	111111
			Seri	ies 10000 Flat T	ор					
9.9	251	10	4.02-4.25	102-108	3.33	85	9.90	251	5.71	145
11.8	300	12	5.01-5.20	127-132	3.73	95	11.80	300	6.66	169
13.7	348	14	5.98-6.15	152-156	4.03	102	13.70	348	7.61	193
15.7	399	16	7.01-7.15	178-182	4.33	110	15.70	399	8.61	219
			Series 100	000 Non Skid Ra	ised Rib					
9.9	251	10	4.02-4.25	102-108	3.33	85	10.15	258	5.96	151
11.8	300	12	5.01-5.20	127-132	3.73	95	12.05	306	6.91	176
13.7	348	14	5.98-6.15	152-156	4.03	102	13.95	354	7.86	200
15.7	399	16	7.01-7.15	178-182	4.33	110	15.95	405	8.86	225
			Series 100	000 Non Skid Pe	erforated				•	
9.9	251	10	4.02-4.25	102-108	3.33	85	9.99	254	5.80	147
11.8	300	12	5.01-5.20	127-132	3.73	95	11.89	302	6.75	171
13.7	348	14	5.98-6.15	152-156	4.03	102	13.79	350	7.70	196
15.7	399	16	7.01-7.15	178-182	4.33	110	15.79	401	8.70	221


10000

Dead Plate Gap

A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

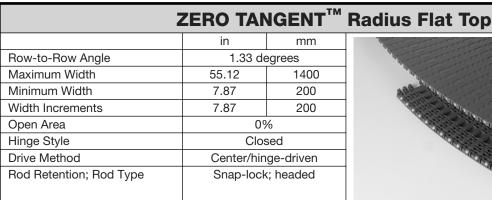
When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.

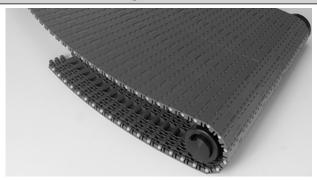
Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.

- A Top surface of dead plate
- B Dead plate gap

	Sprocket Description	Ga	р	
Pitch D	Pitch Diameter		in	mm
in	mm	No. Teeth	""	""""
9.9	251	10	0.233	5.9
11.8	300	12	0.194	4.9
13.7	348	14	0.166	4.2
15.7	399	16	0.145	3.7

RADIUS BELTS


Engineering Program Analysis for Spiral and Radius


Use the Intralox Engineering Program to calculate the estimated belt pull for radius applications and ensure that the belt is strong enough for the application. Contact Intralox Customer Service for more information.

Information Required for an Analysis

- Any environmental conditions which can affect the friction coefficient. For dirty or abrasive conditions, use higher-than-normal friction coefficients.
- Belt width
- Length of each straight run
- Turning angle of each turn
- Turn direction of each turn
- Inside turn radius of each turn
- Carryway and hold down rail material
- Product load lb/ft² (kg/m²)
- Product accumulation conditions
- Belt speed
- Elevation changes in each section
- Operating temperatures

Note: For assistance with radius belt and low-tension capstan drive spiral selections, contact Intralox Customer Service Technical Support Group.

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Uses nylon rods.
- Belt shape completely eliminates the need for straight sections before and after turns.
- Pitch distance changes, depending upon the location of the module from the center of the turn.
- Intralox provides complete design guidelines, which minimize engineering design investment.
- Designed for radius applications with a minimum insideturn radius of 23.62 in (600 mm).

Belt Data									
Belt material	Standard rod material Ø 0.180 in (4.6 mm)	Belt strength		Temperature range (continuous)		Belt weight			
	0.160 (1 (4.6 (1)(1))	lb/ft	kg/m	°F	°C	lb/ft²	kg/m²		
Acetal	Nylon	907	1350	-50 to 200	-46 to 93	1.89	9.25		

	Sprocket and Support Quantity Reference										
Belt Width Range ¹		Minimum Number of	W	earstrips							
in	mm	Sprockets Per Shaft ²	Carryway	Returnway							
7.87	200	2	2	2							
15.75	400	4	3	2							
23.62	600	6	4	2							
31.50	800	8	5	3							
39.37	1000	10	6	3							

For other widths, use an even number of sprockets at maximum sprocket spacing: 3.94 in (100 mm). Maximum carryway spacing: 7.87 in (200 mm). Maximum returnway spacing: 15.75 in (400 mm)

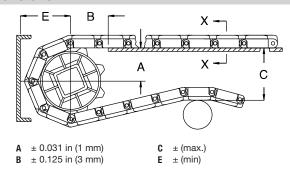
							Nylon	Sproc	kets³, ⁴	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.			ore Sizes	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.		Met	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width		Round in	Square	Round	Square
Action)	in	mm	in	mm	in	mm	1-7/16	in -	mm	mm -
12	2.3	58	2.4	61	1.0	25	1-7/16	-	40	-
(3.41%)										
12	2.6	66	2.7	70	1.0	25	1-7/16	-	40	-
(3.41%)										
12	3.0	76	3.1	78	1.0	25	1-7/16	-	40	-
(3.41%)										
12	3.3	84	3.4	87	1.0	25	1-7/16	-	40	-
(3.41%)										
12	3.7	94	3.8	96	1.0	25	1-7/16	_	40	_
(3.41%)	0.7	54	0.0	30	1.0	20	1 7/10		40	
,	4.0	100	4.4	101	1.0	0.5	1 7/10		- 10	
12	4.0	102	4.1	104	1.0	25	1-7/16	-	40	-
(3.41%)										
12	4.4	112	4.5	113	1.0	25	1-7/16	-	40	-
(3.41%)										
12	4.7	119	4.8	122	1.0	25	1-7/16	-	40	-
(3.41%)										
12	5.1	130	5.1	131	1.0	25	1-7/16	-	40	-
(3.41%)										
12	5.4	137	5.5	139	1.0	25	1-7/16	_	40	_
(3.41%)	0.4	107	0.0	100	1.0	25	1-7/10		40	
,		4.47		1.10	1.0	0.5	1 7/10		- 10	
12	5.8	147	5.8	148	1.0	25	1-7/16		40	
(3.41%)										
12	6.2	157	6.2	157	1.0	25	1-7/16		40	
(3.41%)										
12	6.5	165	6.5	165	1.0	25	1-7/16		40	
(3.41%)										
12	6.9	175	6.9	174	1.0	25	1-7/16		40	
(3.41%)	0.0		0.0				, .			
(0.4170)										

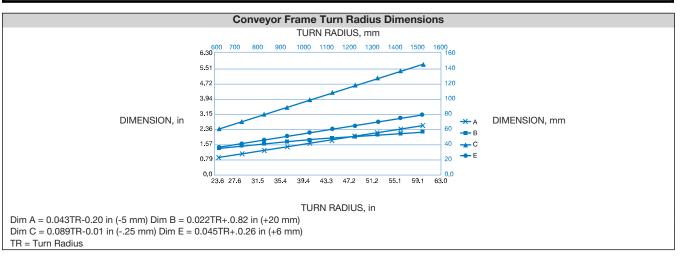
¹ If the actual width is critical, contact Intralox Customer Service.

² Lock down all sprockets.

³ Contact Intralox Customer Service for lead times.

⁴ Sprockets are made of non-FDA nylon.

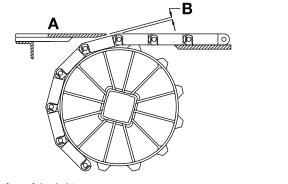



Conveyor Frame Dimensions

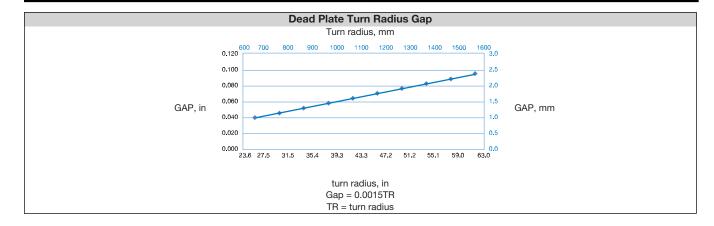
Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see Basic Conveyor Frame Requirements.

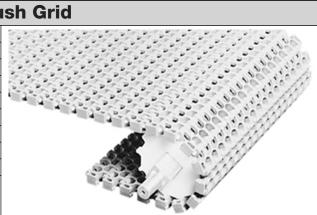


Dead Plate Gap

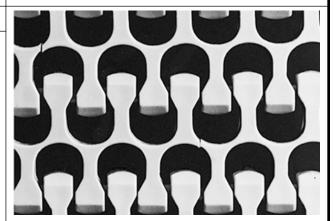

A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

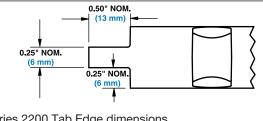
When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.

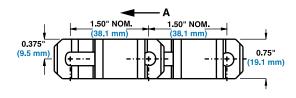


- A Top surface of dead plate
- B Dead plate gap



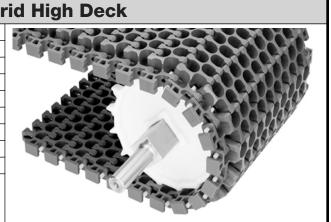


	R	adius Flu		
	in	mm		
Pitch	1.50	38.1		
Minimum Width	5	127		
Width Increments	1.00	25.4		
Opening Size (approximate)	0.50×0.75	12.7 × 19.7		
Open Area	50%			
Product Contact Area	37	%		
Hinge Style	Op	en		
Drive Method	Hinge-driven			
Rod Retention; Rod Type	Occluded ed	ge; unheaded		

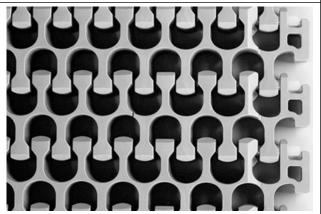


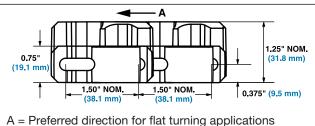
- This belt has pinch points. See the Safety section in the Intralox Conveyor Belting, Installation, Maintenance & Troubleshooting Manual for more information.
- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Flush edge or tab edge available.
- Lightweight, strong belt with a smooth surface grid.
- Belt openings pass straight through belt, providing easy cleaning.
- Designed for radius applications with a minimum turn radius of 2.2 times belt width (measured from inside edge).
- Non-sliding drive system reduces belt and sprocket wear, and provides low back tension.
- Tab edge belt width measurement does not include tabs. Tabs extend approximately 0.5 in (13 mm) \times 0.25 in (6 mm) on each side of belt, inside wearstrip.
- Maximum belt width in turns: 36 in (914 mm)

Series 2200 Tab Edge dimensions


A = Preferred direction for flat-turning applications

Belt Data								
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Straig stre	ht belt ngth	Curved belt strength		ture range nuous)	Belt w	/eight
	0 0.24 1 (0.1 11 11)	lb/ft	kg/m		°F	°C	lb/ft²	kg/m²
Polypropylene	Acetal	1600	2380	For curved belt strength	34 to 200	1 to 93	1.86	9.10
Polyethylene ¹	Acetal	1000	1490	calculations, contact	-50 to 150	-46 to 66	1.96	9.56
Acetal	Nylon	2500	3720	Intralox Customer	-50 to 200	-46 to 93	2.82	13.80
Polypropylene	Polypropylene ²	1400	2100	Service.	34 to 220	1 to 104	1.78	8.69


¹ Polyethylene cannot exceed 150°F (66°C)

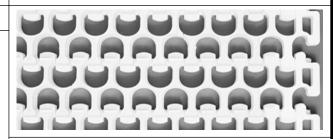

² Polypropylene rods can be installed in polypropylene belts when extra chemical resistance is required. Please note lower belt strength.

	Radius	Flush G			
	in	mm			
Pitch	1.50	38.1			
Minimum Width	6	152			
Width Increments	1.00	25.4			
Opening Size (approximate)	0.50×0.75	12.7 × 19.7			
Open Area	50	%			
Product Contact Area	37%				
Hinge Style	Ор	en			
Drive Method	Hinge-	driven			
Rod Retention; Rod Type	Occluded edg	ge; unheaded			

- This belt has pinch points. See the Safety section in the Intralox Conveyor Belting, Installation, Maintenance & Troubleshooting Manual for more information.
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Makes turns with an inside radius of 2.2 times the belt width
- Provides more beam strength than the standard Series
 2200 belt. This feature can reduce retrofit costs in spirals.
- Uses standard Series 2200 wearstrips.
- 0.5 in (12.7 mm) higher than the standard Series 2200 belt.
- Standard indent: 1.25 in (31.8 mm).

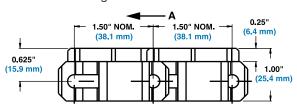


	Belt Data							
Belt material Standard rod material Ø		Straight belt strength ¹		Curved belt strength	Temperature range (continuous)		Belt weight	
	0.24 in (6.1 mm)	lb/ft	kg/m		°F	°C	lb/ft²	kg/m²
Acetal	Nylon	2500	3720	For curved belt strength calculations, contact Intralox Customer Service.	-50 to 200	-46 to 93	3.66	17.87


¹ When using polyurethane sprockets, the belt strength for belts rated over 750 lb/ft (1120 kg/m) is de-rated to 750 lb/ft (1120 kg/m). All other belts maintain their published rating. The temperature range for polyurethane sprockets is 0°F (-18°C) to 120°F (49°C). Contact Intralox Customer Service for availability of polyurethane sprockets.

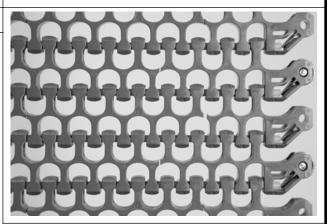


	Ra	dius Fric		
	in	mm		
Pitch	1.50	38.1		
Minimum Width	5	127		
Width Increments	1.00	25.4		
Opening Size (approximate)	0.50×0.75	12.7 × 19.7		
Open Area	50	%		
Hinge Style	Ор	en		
Drive Method	Hinge-driven			
Rod Retention; Rod Type	Occluded edg	ge; unheaded		



- This belt has pinch points. See the Safety section in the Intralox Conveyor Belting, Installation, Maintenance & Troubleshooting Manual for more information.
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Flush edge or tab edge available.
- Available in gray polypropylene with gray rubber, white polypropylene with white rubber, and natural polyethylene, with white rubber.
- · Belt openings pass straight through belt to simplify cleaning.
- Non-sliding drive system provides reduced belt and sprocket wear, and low back- tension
- Designed for radius applications with a minimum turn radius of 2.2 times the belt width (measured from the inside edge).
- Temperature, environmental conditions, and product characteristics affect the maximum degree of incline. Consider these factors when designing conveyor systems using these belts.
- Tab edge belt width measurement does not include tabs. (Tabs extend approximately 0.5 in (13 mm) \times 0.25 in (6 mm) on each side of belt, inside the
- Molded indent: 1.75 in (44 .5 mm).
- Maximum belt width in turns: 36 in (914 mm).

Series 2200 Tab Edge dimensions

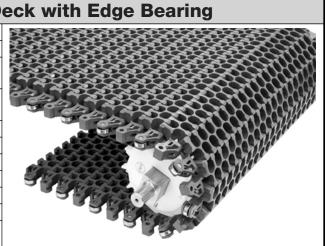

A = Preferred direction for flat turning applications

	Belt Data											
Base Belt Base/ Standard Rod Material Ø		Belt Strength		Curved Belt	Temp. F (continu	0	Belt \	Veight	Friction Top		ncy tability	
Material	Friction Color	0.24 in (6.1 mm)	lb/ft	kg/m	Strength	°F	°C	lb/ft²	kg/m²	Hardness	FDA (USA)	EU MC ^b
Polypropylene	Gray/Gray	Acetal	1600	2380	Contact	34 to 150	1 to 66	2.20	10.74	64 Shore A		
Polypropylene	White/ White	Acetal	1600	2380	Intralox Customer	34 to 150	1 to 66	2.20	10.74	55 Shore A	а	С
Polyethylene	Natural/ White	Acetal	1000	1490	Service for curved belt	-50 to 120	-46 to 49	2.30	11.23	55 Shore A	а	С
Polypropylene	Gray/Gray	Polypropylene	1400	2100	strength	34 to 150	1 to 66	2.12	10.35	64 Shore A		
Polypropylene	White/ White	Polypropylene	1400	2100	calculations.	34 to 150	1 to 66	2.12	10.35	55 Shore A	а	С

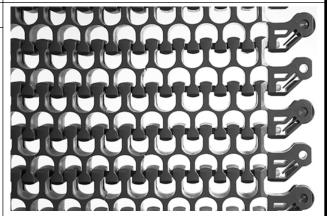
- · Fully compliant
- a FDA Compliant with Restriction: Do not use in direct contact with fatty foods.
- b European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.
- c EU compliant with Restriction: Do not use in direct contact with fatty foods.

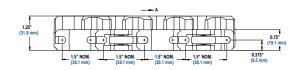
Radiu	s with E	dge Bearing
in	mm	300000
1.50	38.1	25000
7	178	
9	229	
1.00	25.4	
0.50 x 0.75	12.7 x 19.7	225
50	%	80000
37	%	
Ор	en	96
Hinge-	driven	
Occluded edg	ge; unheaded	
	in 1.50 7 9 1.00 0.50 x 0.75 50 37 Op Hinge-	1.50 38.1 7 178 9 229 1.00 25.4

- This belt has pinch points. See the Safety section in the Intralox Conveyor Belting, Installation, Maintenance & Troubleshooting Manual for more information.
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Both flush edge and tab edge are available for belts with bearings on only one side. Flush edge and tab edge must be placed on the outside edge of the turn.
- · Rod retention allows for easier insertion and removal of rods.
- Edge bearings are only available for turning belts.
- Bearings are chrome steel, recommended for dry applications only.
- Bearings are retained in the belt using a stainless pin.
- Bearings are available on one side for belts that turn in only one direction or on both sides for belts that turn in both directions.
- Bearings must be placed on the inside edge of the turn.
- Bearings must be configured in every other row of the belt.
- Designed for radius applications with a minimum turn radius of 2.2 times the belt width (measured from the inside edge of the wearstrip channel).
- Use the Intralox Engineering Program to determine if edge bearings are suitable for the intended application.
- The plastic portion of the bearing edge is indented 0.125 in (3.2 mm). Belt width is measured to the end of the bearing.
- Belts with bearings on one side work with standard edge, hold down wearstrips with a 0.50 in (12.7 mm) deep channel.
- Belts with bearings on both sides require the wearstrip on the outside of the turns to have at least a 0.75 in (19.1 mm) deep channel.
- Maximum belt width: 36 in (914 mm).
- Maximum belt speed: 350 fpm (107 meters per minute).



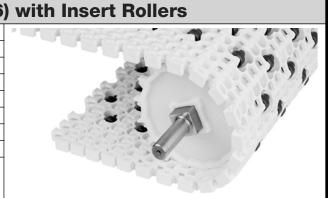
A = Preferred direction for flat turning applications


Belt Data								
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Straight belt strength		Curved belt strength	Temperat (contir	Belt weight		
	0.24 1 (6.1 11 11)	lb/ft	kg/m		°F	°C	lb/ft²	kg/m²
Acetal	Nylon	2000		Contact Intralox Customer Service for curved belt strength calcluations.	-50 to 200	-46 to 93	2.82	13.80

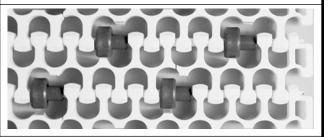


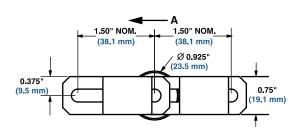
Radius	Flush Gri	d High D
	in	mm
Pitch	1.50	38.1
Minimum Width (Bearings one side)	7.0	177.8
Minimum Width (Bearings both sides)	9.0	228.6
Width Increments	1.0	25.4
Opening Size (approximate)	0.50 x 0.75	12.7 x 19.7
Open Area	50	%
Product Contact Area	37	%
Hinge Style	Ор	en
Drive Method	Hinge-	driven
Rod Retention; Rod Type	Occluded edg	ge; unheaded

- This belt has pinch points. See the Safety section in the Intralox Conveyor Belting, Installation, Maintenance & Troubleshooting Manual for more information.
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Occluded edge rod retention provides easier rod insertion and removal.
- Edge bearings are only recommended for dry applications.
- Use the Intralox Engineering Program to determine if edge bearings are suitable for the intended application.
- Bearings are chrome steel, and are retained in the belt using a stainless pin.
- Edge bearings are only available for turning belts. Bearings are available on one side for belts that turn in only one direction or on both sides for belts that
- Bearings must be placed in every other row of the belt, on the inside edge of the turn.
- Designed for radius applications with a minimum turn radius of 2.2 times the belt width, measured from the inside edge of the wearstrip channel.
- 0.5 in (12.7 mm) higher than the standard Series 2200 belt.
- Standard Indent: 1.75 in (44.5 mm).
- The plastic portion of the bearing edge is indented 0.125 in (3.2 mm). Belt width is measured to the end of the bearing.
- Belts with bearings on one side work with standard edge, hold down wearstrips with a 0.50 in (12.7 mm) deep channel.
- Belts with bearings on both sides require the wearstrip on the outside of the turns to have at least a 0.75 in (19.1 mm) deep channel.
- Maximum belt width: 36 in (914 mm).
- Maximum belt speed: 350 fpm (107 meters per minute).



A = Preferred direction for flat, turning applications

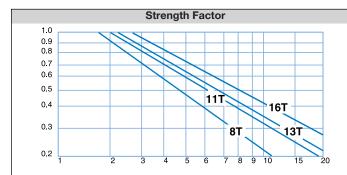

	Belt Data							
Belt material Standard rod material Ø 0.24 in (6.1 mm)		_	ht belt ngth	Curved belt strength	Temperature range (continuous)		Belt weight	
		lb/ft	kg/m		°F	°C	lb/ft²	kg/m²
Acetal	Nylon	2000	2976	Contact Intralox Customer Service for curved belt strength calculations.	-50 to 200	-46 to 93	3.66	17.87



Radi	us Flush	Grid (2.6		
	in	mm		
Pitch	1.50	38.1		
Minimum Width	7	178		
Width Increments	1.00	25.4		
Opening Size (approximate)	0.50×0.75	12.7 × 19.7		
Open Area	50%			
Hinge Style	Ор	en		
Drive Method	Hinge-driven			
Rod Retention; Rod Type	Occluded edg	ge; unheaded		

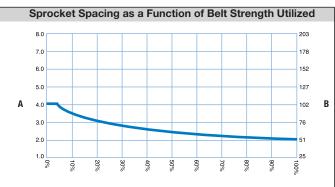
- This belt has pinch points. See the Safety section in the Intralox Conveyor Belting, Installation, Maintenance & Troubleshooting Manual for more information.
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Flush edge or tabbed edge available.
- · Uses acetal rollers.
- Do not place sprockets inline with rollers.
- For applications where low back-pressure accumulation is required.
- Back-up load is 5% to 10% of product weight.
- For low back-pressure applications, place wearstrips between rollers. For driven applications, place wearstrips directly under rollers.
- Tab edge belt width does not include tabs. (Tabs extend approximately 0.5 in (13 mm) × 0.25 in (6 mm) on each side of belt, inside wearstrip.)
- Belts 16 in (406 mm) wide and less have a turn radius of 2.2 times the belt width. Wider belts have a turn radius of 2.6 times the belt width.
- For applications that require a belt width greater than 24 in (610 mm), contact Intralox Customer Service.
- Standard roller spacing across belt width: staggered 4 in (102 mm) or inline - 2 in (51 mm), 3 in (76 mm), or 4 in (102 mm).
- Standard roller spacing along belt length: staggered 1.5 in (38.1 mm) or inline - 3 in (76.2 mm).
- Custom roller placement is available. Contact Intralox Customer Service for more information.
- Minimum roller indent: 2.5 in (63.5 mm).

A = Preferred direction for flat turning applications


	Belt Data													
Standard rod			St	raight b	elt strer	igth								
	material Ø		Ro	ller Wic	th Spac	cing		Roller I	Indents	Curved belt	Temp. Ra		Rolt v	weight
Belt material	0.24 in (6.1 mm)	2 in	51 mm	3 in	7.6 mm	4 in	102 mm	i toller i	indents	strength	(contir	nuous)	Deit	weigin
	111111)	lb/ft	kg/m	lb/ft	kg/m	lb/ft	kg/m	in	mm		°F	°C	lb/ft²	kg/m²
Polypropylene	Acetal	400	600	710	1060	900	1340	2.5	64	For curved	34 to	1 to	1.86	9.08
								3.5 to	89 to	belt	200	93		
								4.5	114	strength				
Acetal	Nylon	630	940	1110	1650	1410	2100	2.5	64	calculations,	-50 to	-46 to	2.82	13.8
								3.5 to	89 to	contact	200	93		
								4.5	114	Intralox				
Polypropylene	Polypropylene ¹	350	520	620	920	790	1180	2.5	64	Customer	34 to	1 to	1.78	8.69
								3.5 to	89 to	Service.	220	104		
								4.5	114					

¹ Polypropylene rods can be installed in polypropylene belts when extra chemical resistance is required. Please note lower belt strength.

SERIES 2200

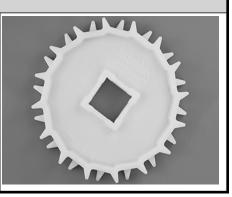

		Sprocket a	nd Support Quantity Refere	nce
Belt Wic	dth Range ¹	Minimum Number of	We	earstrips ³
in	mm	Sprockets Per Shaft ²	Carryway	Returnway
5	127	2	2	2
6	152	2	2	2
7	178	2	2	2
8	203	2	2	2
10	254	3	3	2
12	305	3	3	2
14	356	5	3	3
15	381	5	3	3
16	406	5	3	3
18	457	5	3	3
20	508	5	4	3
24	610	7	4	3
30	762	9	5	4
32	813	9	5	4
36	914	9	5	4
42	1067	11	6	5
48	1219	13	7	5
54	1372	15	7	6
60	1524	15	8	6
72	1829	19	9	7
84	2134	21	11	8
96	2438	25	12	9
120	3048	31	15	11
144	3658	37	17	13
or other w	vidths, use an c	odd number of sprockets at	Maximum 9 in (229 mm) centerline	Maximum 12 in (305 mm) centerline
Maxim	num 4 in (102 m	nm) centerline spacing.	spacing	spacing

Speed/length ratio (V/L)

Divide belt speed (V) by the shaft centerline distance (L). Strength Factor is found at intersection of the speed/length ratio and the appropriate sprocket line. See Belt Selection Instructions for more information.

V = ft/min (m/min); T = number of teeth; L = ft (m)

Percentage of allowable belt strength utilized


- A Sprocket spacing, in
- B Sprocket spacing, mm

¹ If belt width exceeds a number listed in the table, see the sprocket and support material minimums for the next larger width range. Belts are available in 1.00 in (25.4 mm) increments beginning with minimum width of 5 in (127 mm). If the actual width is critical, contact Intralox Customer Service. Intralox does not recommend turning belts wider than 36 in (914 mm). For turning applications that require wider belts, contact Intralox Customer Service.

² This number is a minimum. Heavy-load applications can require additional sprockets (Place sprockets every inch for heavily loaded applications). For lockdown location, see Retainer Rings/ Center Sprocket Offset.

³ The number of wearstrips given does not include the hold down wearstrip.

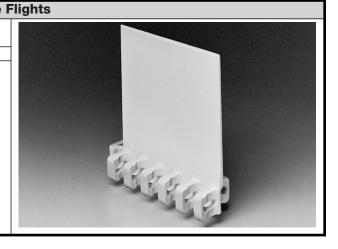
							Molde	d Spro	cket1	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A۱	vailable B	ore Size	s
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in	in	mm	mm
8	3.9	99	4.0	102	1.0	25		1.5		40
(7.61%)										
13	6.3	160	6.4	163	1.0	25		2.5		60
(2.91%)										
16	7.7	196	7.8	198	1.0	25		1.5		40
(1.92%)								2.5		60

						E	Z Clea	n [™] Spı	rocket	2	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A۱	/ailable B	ore Size	S	Γ
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric	1
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	1
Action)	in	mm	in	mm	in	mm	in	in	mm	mm	l
11	5.3	135	5.4	137	1.0	25		1.5		40	1
(4.05%)											
13	6.3	160	6.4	163	1.0	25		1.5		40	1
(2.91%)											

						Ac	etal Sp	olit Spr	ocket	S ³
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable b	ore sizes	3
teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric
(chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
action)	in	mm	in	mm	in	mm	in	in	mm	mm
13	6.3	160	6.4	163	1.5	38	1.5,	1.5		
(2.91%)							1-7/164			
,										

¹ Contact Intralox Customer Service for lead times.

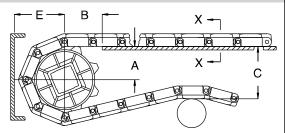
² Contact Intralox Customer Service for lead times. When using polyurethane sprockets, the belt strength for belts rated over 750 lb/ft (1120 kg/m) is de-rated to 750 lb/ft (1120 kg/m) All other belts maintain the published rating. The temperature range for polyurethane sprockets is 0°F (-18°C) to 120°F (49°C). Contact Intralox Customer Service for availability of polyurethane sprockets.


3 Contact Intralox Customer Service for lead times.

⁴ Tight fit round bore.

		Streamline
Available F	light Height	Available Materials
in	mm	Available Waterlas
4	102	Polypropylene, polyethylene, acetal

- Each flight rises out of the center of its supporting module, molded as an integral part. No fasteners are required.
- Flights are available in linear increments of 1.5 in (38 mm).
- Flights can be cut down to custom heights. Minimum height: 0.25 in (6.4 mm).
- Standard indent: 0.625 in (15.9 mm).



Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in

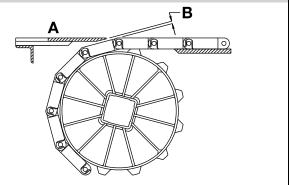
For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see Basic Conveyor Frame Requirements.

A ± 0.031 in (1 mm) **B** ± 0.125 in (3 mm)

C ± (max.) ± (min)

Sp	rocket De	scription	Α		l l	3	(E	
Pitch D	Diameter	No. Teeth	Range (Botton	n to Top)	in	mm	in	mm	in	mm
in	mm	No. reem	in	mm	""	111111	""	111111		111111
			Series 2200 Radius Fl	ush Grid, Radiu	s with Ed	ge Bearing	9			
3.9	99	8	1.44	37	1.93	49	3.92	100	2.40	61
5.3	135	11	2.18	55	2.27	58	5.32	135	3.10	79
6.3	160	13	2.67	68	2.52	64	6.27	159	3.57	91
7.7	196	16	3.40	86	2.78	71	7.69	195	4.28	109
	•		Series 22	200 Radius Frict	ion Top					
3.9	99	8	1.44-1.58	36-40	1.93	49	4.17	106	2.65	67
5.3	135	11	2.18-2.29	55-58	2.27	58	5.57	142	3.35	85
6.3	160	13	2.67-2.76	68-70	2.52	64	6.52	166	3.82	97
7.7	196	16	3.40-3.47	86-88	2.78	71	7.94	202	4.53	115
			Series 2200 Radiu	ıs Flush Grid wi	th Insert I	Rollers				
3.9	99	8	1.44-1.58	36-40	1.93	49	4.00	102	2.48	63
5.3	135	11	2.18-2.29	55-58	2.27	58	5.42	138	3.19	81
6.3	160	13	2.67-2.76	68-70	2.52	64	6.36	162	3.66	93
7.7	196	16	3.40-3.47	86-88	2.78	71	7.78	198	4.37	111
		Series 2200 Rad	ius Flush Grid High De	eck, Radius Flus	sh Grid Hi	gh Deck w	ith Edge	Bearing		
3.9	99	8	1.44-1.58	36-40	1.93	49	4.42	112	2.90	74
5.3	135	11	2.18-2.29	55-58	2.27	58	5.82	148	3.60	91
6.3	160	13	2.67-2.76	68-70	2.52	64	6.77	172	4.07	103
7.7	196	16	3.40-3.47	86-88	2.78	71	8.19	208	4.78	121


Dead Plate Gap

A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

SERIES 2200

When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.

A Top surface of dead plate

B Dead plate gap

	Sprocket Description	Gap			
Pitch D	Pitch Diameter		in	mm	
in	mm	No. Teeth	ın	111111	
3.9	99	8	0.150	3.8	
5.3	135	11	0.108	2.8	
6.3	160	13	0.091	2.3	
7.7	196	16	0.074	1.9	

Hold Down Rails and Wearstrips

Intralox recommends using continuous hold down rails through an entire turn. Start the rails at a distance of 1X the belt width before the turn and ending 1X the belt width after the turn. This recommendation applies to both carryway and returnway. The use of hold down rails along both side of the belt over the full carryway is recommended but not mandatory. Series 2200 is available with and without an edge tab. A wearstrip style is available for each edge style. The tab edge design allows the belt to be held down without the wearstrip interfering with the carryway surface. See *Custom Wearstrips*.

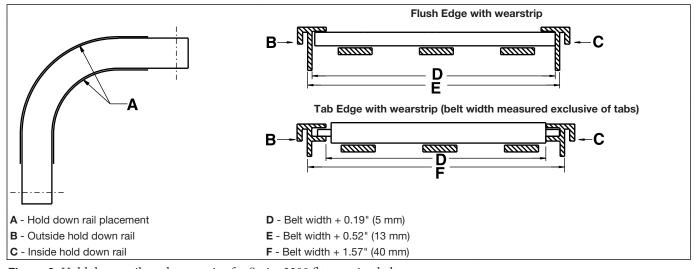


Figure 6: Hold down rails and wearstrips for Series 2200 flat-turning belts

Belt Selection Instructions

For assistance with radius belt and low-tension capstan drive spiral selections, contact Intralox Customer Service Technical Support Group. Run the Engineering Program to ensure that the belt is strong enough for the radius application in question. See Engineering Program Analysis for Spiral and Radius for more information.

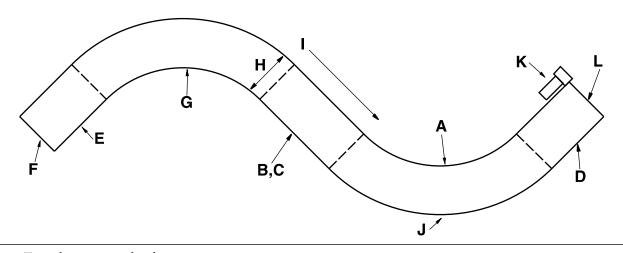
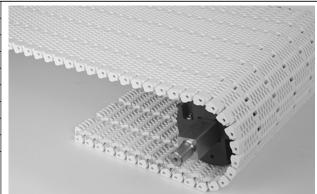
Series 2200 Design Guide Summary

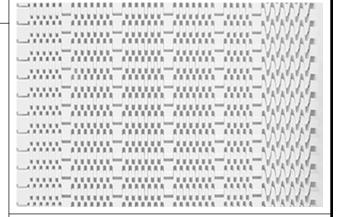
For more information, see the Installation, Maintenance & Troubleshooting Manual available from Intralox.

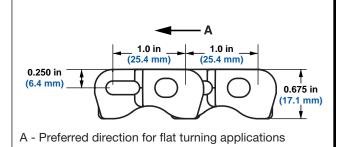
- A The minimum and recommended turn radius for Series 2200 is 2.2 times the belt width, measured from the inside edge.
- **B** The minimum straight run required between turns of opposing direction is 2.0 times the belt width. Shorter straight sections lead to high wear on the edge guide rail and high pull stresses in the belt.
- C There is no minimum straight run required between turns that are **H** in the same direction.
- The minimum final straight run (leading to drive shaft) must be a minimum of 5 ft (1.5 m). If 5 ft (1.5 m) is not feasible, shorter distances (down to 1.5 x belt width) require a weighted take up to L drive shaft avoid sprocket wear and tracking problems. See Special Take-up Arrangements.
- E The minimum length of the first straight run (immediately after the idle shaft) is 1.5 times the belt width. When shorter lengths are required (down to 1.0 times the width), an idle roller can be used in place of sprockets.

SERIES 2200

- F idle shaft
- G first turn
- belt width
- belt travel
- J second turn
- K drive motor

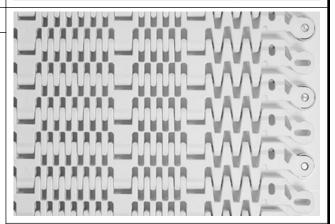



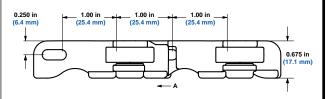

Figure 7: Typical two-turn radius layout



FI	ush Grid	Nose-Ro	ller Tight Turning
	in	mm	
Pitch	1.0	25.4	
Minimum Width	12.0	305	I to be
Maximum Width	30.0	762	and de
Width Increments	3.0	76.2	00000
Max Opening Size (Sphere)	0.245	6.2	William Comment
Open Area (Fully Extended)	28	%	
Hinge Style	Clos	sed	Delin and a second
Drive Method	Center/hinge-driven		
Rod Retention; Rod Type	Occluded edg	ge; unheaded	
			- X

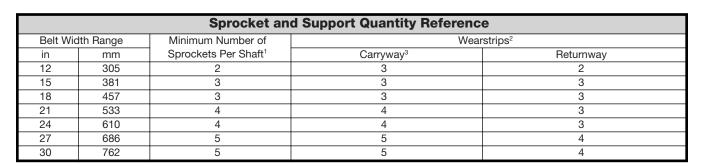
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a helt.
- Smooth upper surface provides free product movement.
- · Smaller opening size enhances belt safety.
- Can make 180-degree turns.
- Minimizes floor space requirements.
- · Minimum back tension required.
- Available with tight turning modules built on one side.
- Belts can turn either clockwise or counterclockwise.
 Turning direction must be specified at order.
- Not available for "S" turn applications.
- Designed for sideflexing applications with a minimum turn radius of 1.7 times belt width (measured from inside edge).
- Sprockets have large lug teeth that enhance sprocket life.
- Underside design allows the belt to run smoothly around a 0.75 in (19.1 mm) nosebar.
- Turn radius for belts 12.0 in–27.0 in (305–685.8 mm): 1.7 times belt width.
- Turn radius for belts 30.0 in (762 mm): 1.75 times belt width.
- Sprocket placement: every 3.00 in (76.2 mm) from outer edge, except drive pocket nearest inner edge. Drive pocket nearest inner edge is 3.75 in (95.3 mm) from inner edge.

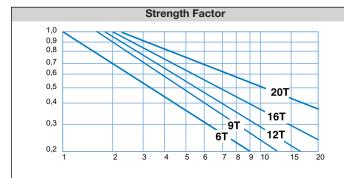



	Belt Data								
Belt material	Standard rod material Ø 0.180 in (4.6 mm)	Straight belt strength		Curved belt strength	Temp. (contir	Belt weight			
	0.180 111 (4.0 11111)	lb/ft	kg/m		°F	°C	lb/ft²	kg/m²	
Acetal	Nylon	900	1339	Contact Intralox Customer Service	-50 to 200	-46 to 93	2.40	11.72	
				for curved belt strength calculations.					

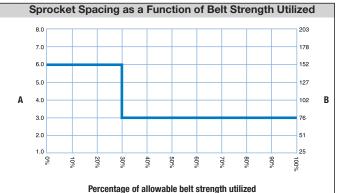
Flush Grid	Nose-Roll	er Tight	Turning with Edge Bearing
	in	mm	
Pitch	1.00	25.4	
Minimum Width	12.0	305	
Maximum Width	30.0	762	
Width Increments	3.0	76.2	
Max Opening Size (Sphere)	0.245	6.2	
Open Area	28	%	
Hinge Style	Clos	sed	- CONTRACTOR OF THE PARTY OF TH
Drive Method	Center/hir	ige-driven	
Rod Retention; Rod Type	Occluded edg	ge; unheaded	

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Smaller opening size enhances belt safety.
- Designed for sideflexing applications with a minimum turn radius of 1.7 times belt width (measured from inside edge).
- Belts can turn clockwise or counterclockwise. Turn direction must be specified when ordering. Not available for "S" turn applications.
- Edge bearings are available on one side of the belt. Bearings must be placed on the inside edge of the turn, and must be configured in every other row of the belt.
- Edge bearings are stainless steel and are retained by stainless steel pins.
- See Series 2300 Flush Grid Nose-Roller Tight Turning Design Guidelines for information about nosebar placement.
- Use the Intralox Engineering Program to determine if edge bearings are suitable for each application.
- Turn radius for belts 12.0 in–27.0 in (305 mm–685.8 mm): 1.7 times belt width.
- Turn radius for belts 30.0 in (762 mm): 1.75 times belt
- Underside design allows the belt to run smoothly around a 0.75-in (19.1-mm) nosebar.




A - Preferred direction for flat turning applications

	Belt Data									
Belt material Standard rod material 0.180 in (4.6 mm)	Straight belt strength		Curved belt strength	Tempera (conti	Belt weight					
	0.160 111 (4.6 111111)	lb/ft	kg/m		°F	°C	lb/ft²	kg/m²		
Acetal	Nylon	900	1339	Contact Intralox Customer Service for curved belt strength calculations.	0 to 200	-17.8 to 93	2.40	11.72		


Carryway Wearstrip Location from Edge of Belt							
	Distance f	rom Edge	Belt V	Vidth			
Wearstrip ⁴	in	mm	in	mm			
1	1.5	38	12–30	305-762			
2	4.5	114	12–30	305-762			
3	7.5	191	12–30	305-762			
4	10.5	267	12–30	305-762			
5	13.5	343	15–30	381–762			
6	16.5	419	18–30	457–762			
7	19.5	495	21–30	533-762			
8	22.5	572	24–30	610–762			
9	25.5	648	27–30	686–762			
10	28.5	724	30	762			

Speed/length ratio (V/L)

Divide belt speed (V) by the shaft centerline distance (L). Strength Factor is found at intersection of the speed/length ratio and the appropriate sprocket line. See Belt Selection Instructions for more information.

V = ft/min (m/min); T = number of teeth; L = ft (m)

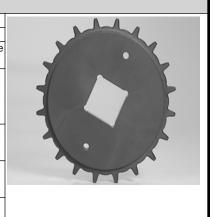
SERIES 2300

- Sprocket spacing, in
- Sprocket spacing, mm

¹ This number is a minimum. Heavy-load applications can require additional sprockets.

² The number shown is the minimum quantity, and does not include hold down wearstrips.

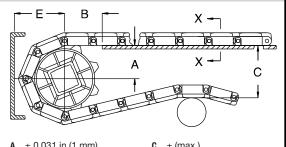
³ Place wearstrips between drive sprockets. See Carryway Wearstrip Location from Edge of Belt table for dimension values.


⁴ 1.0 in (25.4 mm) minimum wearstrip width

SERIES 2300

							Nylon Spli	Sproc	kets¹		
No. of		Nom.	Nom.		Nom.	Nom.		Available Bore Sizes			
Teeth		Pitch	Outer		Hub	Hub	U.S.		Metr	ic	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round in	Square	Round	Square	
Action)	in	mm	in	mm	in	mm		in	mm	mm	
16	5.1	130	5.2	132	1.9	38	1.25	1.5	40	40	
(1.92%)											
18	5.8	147	5.9	150	1.9	38	1.25	1.5	40	40	
(1.52%)							1-7/16				
20	6.4	163	6.5	165	1.9	38	1.25	1.5	40	40	
(1.52%)							1-7/16				

	Nylon Sprockets ²									
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Availa	able Bor	e Sizes	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.		Metri	С
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round in	Square	Round	Square
Action)	in	mm	in	mm	in	mm		in	mm	mm
12	3.9	99	3.9	99	1.0	25	1.25	1.5	25	40
(3.41%)									30	
									40	
16	5.1	130	5.2	132	1.0	25	1.25	1.5	40	40
(1.92%)										
18	5.8	147	5.9	150	1.0	25	1.25	1.5	40	40
(1.52%)										
20	6.4	163	6.5	165	1.0	25	1.25	1.5	40	40
(1.52%)										



Conveyor Frame Dimensions

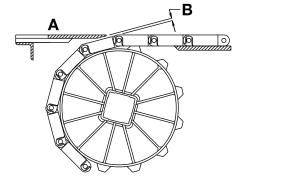
Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in

For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see Basic Conveyor Frame Requirements.

A ± 0.031 in (1 mm) **B** ± 0.125 in (3 mm)

C ± (max.) E ± (min)

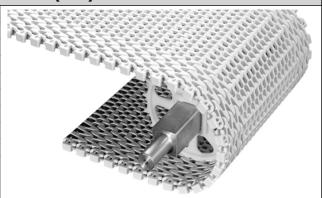

Sprocket Description		A	A		В		С		E	
Pitch D	iameter	No. Teeth	Range (Bot	Range (Bottom to Top)		mm	in	mm	in	mm
in	mm	No. reeur	in	mm	in	111111	""	111111	""	
3.9	99	12	1.44-1.51	37-38	1.92	49	3.69	94	2.24	57
5.1	130	16	2.09-2.14	53-54	2.27	58	4.95	126	2.88	73
5.8	147	18	2.41-2.45	61-62	2.46	62	5.58	142	3.19	81
6.4	163	20	2.73-2.77	69-70	2.57	65	6.22	158	3.51	89

¹ Contact Intralox Customer Service for lead times.

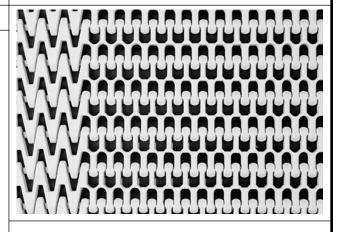
² Contact Intralox Customer Service for lead times.

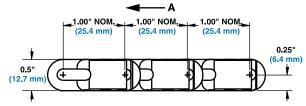
When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.


SERIES 2300

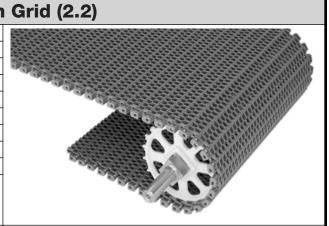
- A Top surface of dead plate
- B Dead plate gap


	Sprocket Description	Gap			
Pitch Diameter		No. Teeth	in	mm	
in	mm	No. reetii	ın	mm	
3.9	99	12	0.065	1.7	
5.1	130	16	0.050	1.3	
6.4	163	20	0.039	1.0	

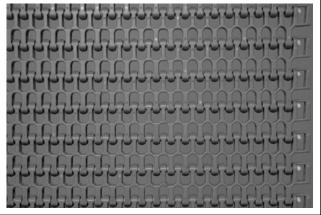


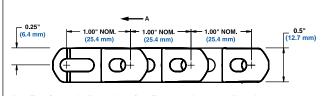
	Rad	ius Flush	
	in	mm	
Pitch	1.00	25.4	
Minimum Width	7	178	
Width Increments	0.50	12.7	
Opening Size (approximate)	0.35×0.30	8.9 × 7.6	
Open Area	42	%	
Product Contact Area	23	%	
Hinge Style	Ор	en	
Drive Method	Hinge-driven		
Rod Retention; Rod Type	Occluded edge; unheaded		

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Belt openings pass straight through belt, making it easy to clean.
- Available with tight turning modules built into one side or both sides of the belt.
- Designed for radius applications with a minimum turn radius of 1.7 times the belt width (measured from inside edge). Maximizes plant floor space.
- Use the Intralox Engineering Program to identify the strength requirements of most radius applications, and ensure that the belt is strong enough for the application.
- Sprocket drive system is designed to minimize wear and require low return-side tension.
- Available with 1.7 modules on the inside and 2.2 modules on the outside for improved strength.
- Radius belt wearstrips are available.
- Contact Intralox Customer Service before using a belt width greater than 18 in (457 mm) in spiral and flat turning applications.
- Looking in the direction of flat-turning travel, the minimum sprocket indent from the right side belt edge with tight turning modules is 2.625 in (66.7 mm).
- Minimum sprocket indent from the left side belt edge with tight turning modules: 2.875 in (73 mm).
- Minimum nosebar diameter: 1.375 in (34.9 mm).



A - Preferred direction for flat turning applications

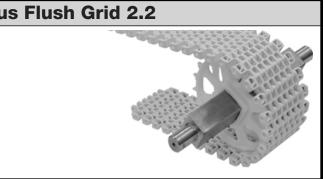

Belt Data									
Belt material Standard rod material Ø 0.180 in (4.57 mm)		Straigl strer		Curved belt strength	Temp. Range	(continuous)	Belt weight		
	0.100 1 (4.57 11 11)	lb/ft	kg/m		°F	°C	lb/ft²	kg/m²	
Polypropylene	Acetal	600	892.8	For curved belt strength	34 to 200	1 to 93	1.20	5.86	
Acetal	Nylon	600	892.8	calculations, contact Intralox	-50 to 200	-46 to 93	1.73	8.44	
Polypropylene	Polypropylene ¹	600	892.8	Customer Service.	34 to 220	1 to 104	1.12	5.47	


¹ Polypropylene rods can be installed in polypropylene belts when extra chemical resistance is required. Please note lower belt strength.

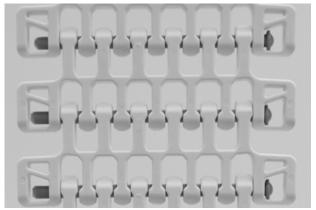
	Rad	ius Flush		
	in	mm		
Pitch	1.00	25.4		
Minimum Width	4	102		
Width Increments	0.50	12.7		
Opening Size (approximate)	0.35×0.30	8.9 × 7.6		
Open Area	42%			
Product Contact Area	23	%		
Hinge Style	Op	en		
Drive Method	Hinge-	driven		
Rod Retention; Rod Type	Occluded edg	ge; unheaded		

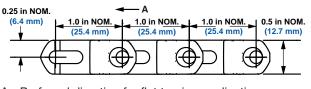
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a helt.
- Belt openings pass straight through the belt to simplify cleaning.
- Designed for radius applications with a minimum turn radius of 2.2 times the belt width (measured from inside edge).
- Sprocket drive system is designed to minimize wear and require low return side tension.
- Use the Intralox Engineering Program to identify strength requirements for radius applications, and ensure that the belt is strong enough for the application.
- Radius belt wearstrips are available.
- Available with hold down guides, see Hold Down Guides (2.2 Only) for details.
- Contact Intralox Customer Service before using a belt wider than 36 in (914 mm) in flat-turning or spiral applications.
- Minimum nosebar diameter: 1.5 in (38.1 mm) with hold down guides and 1.375 in (34.9 mm) without hold down guides.

A - Preferred direction for flat turning applications


Belt Data								
Belt material	Standard rod material Ø 0.18 in (4.57 mm)	_	ht belt ngth	Curved belt strength	Temp. Range (continuous)		Belt weight	
1	0.16 111 (4.37 111111)	lb/ft	kg/m		°F	°C	lb/ft²	kg/m²
Polypropylene	Acetal	1200	1785		34 to 200	1 to 93	1.10	5.40
Acetal	Nylon	1700	2528		-50 to 200	-46 to 93	1.59	7.76
Detectable acetal	HR nylon	1300	1935	For curved belt	-50 to 200	-46 to 93	1.70	8.30
Polypropylene	Polypropylene ¹	1000	1487	strength calculations, contact	34 to 220	1 to 104	1.04	5.11
X-Ray Detectable Acetal ²	X-Ray Detectable Acetal	1700	2528	Intralox Customer Service.	-50 to 200	-46 to 93	1.85	9.03
HR nylon	HR nylon	1700	2530	Gervice.	-50 to 240	-46 to 116	1.43	6.98
HHR nylon	HHR nylon	1700	2530		-50 to 310	-46 to 154	1.43	6.98

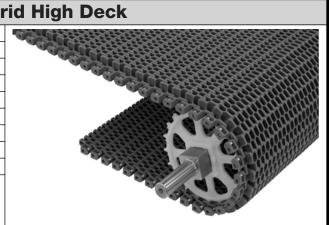
¹ Polypropylene rods can be installed in polypropylene belts when extra chemical resistance is required. Please note lower belt strength.

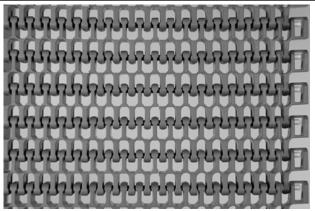

² Designed specifically for detection by X-ray machines.

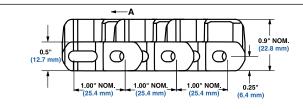


	Mold to Wi	dth Radiu
	in	mm
Pitch	1.00	25.4
Molded Width	4	101.6
Opening Size (approximate)	0.35 x 0.30	8.9 x 7.6
Open Area	42	%
Hinge Style	Ор	en
Drive Method	Hinge-	driven
Rod Retention; Rod Type	Snap-lock	k; headed

- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Belt openings pass straight through the belt to simplify cleaning.
- Sprocket drive system is designed to minimize wear and requires very low return side tension.
- Use the Intralox Engineering Program to identify the strength requirements of most radius applications, and ensure that the belt is strong enough for the application.
- Available with hold down guides, see Hold Down Guides (2.2 Only) for details.
- Radius belt wearstrips are available.
- Hold down guides cannot be used with 2 in and 2.9 in pitch diameter sprockets or 3.9 in pitch diameter square bore sprockets.
- Minimum nosebar diameter: 1.5 in (38.1 mm) with hold down guides and 1.375 in (34.9 mm) without hold down guides.

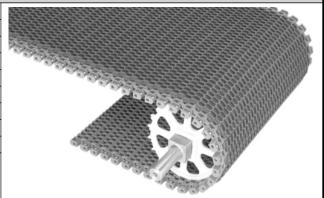



A - Preferred direction for flat turning applications

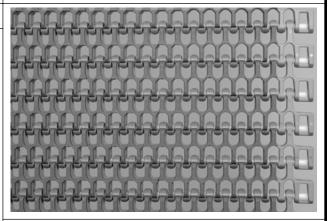

Belt Data											
Belt material	Standard rod Straight belt material Ø 0.18 in strength		Curved belt strength	Temp. Range	Belt weight						
	(4.57 mm)	lb	kg		°F	°C	lb/ft	kg/m			
Acetal	Nylon	560	254	For curved belt strength	-50 to 200	-46 to 93	0.56	0.83			
Polypropylene	Acetal	400	181	calculations, contact Intralox Customer Service.	34 to 200	1 to 93	0.39	0.57			

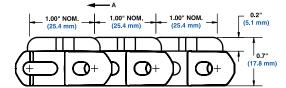
	Radius	Flush G			
	in	mm			
Pitch	1.00	25.4			
Minimum Width	4	102			
Width Increments	0.50	12.7			
Opening Size (approximate)	0.35×0.30	8.9 × 7.6			
Open Area	42%				
Product Contact Area	23%				
Hinge Style	Open				
Drive Method	Hinge-driven				
Rod Retention; Rod Type	Occluded edg	ge; unheaded			

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Makes turns with an inside radius of 2.2 times the belt width.
- Works with standard Series 2400 wearstrips.
- Flush Grid High Deck is 0.4 in (10 mm) higher than the standard Series 2400 belt.
- Standard indent: 0.875 in (22.2 mm).



A - Preferred direction for flat turning applications

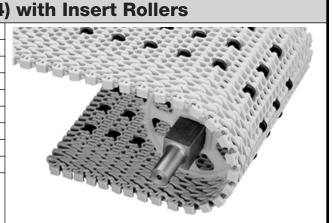

Belt Data											
Belt material	Standard rod material Ø 0.18 in (4.57 mm)	Straight belt strength		Curved belt strength	Temperat (conti	Belt weight					
	0.16 1 (4.37 11 11)	lb/ft	kg/m		°F	°C	lb/ft²	kg/m²			
Polypropylene	Acetal	1200	1785		34 to 200	1 to 93	1.90	9.28			
HR nylon	Nylon	1700	2530	For curved belt strength	-50 to 240	-46 to 116	2.30	11.23			
Acetal	Acetal	1700	2530	calculations, contact Intralox	-50 to 200	-46 to 93	2.83	13.82			
X-Ray Detectable Acetal	X-Ray Detectable Acetal	1700	2530	Customer Service.	-50 to 200	-46 to 93	3.31	16.16			



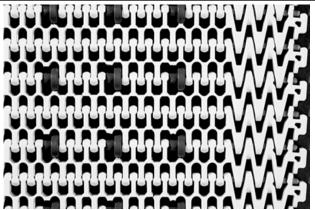
	Radio	us Frictio	on Top (2.2)	
	in	mm		
Pitch	1.00	25.4		
Minimum Width	4	102		
Width Increments	0.50	12.7		
Opening Size (approximate)	0.35×0.30	8.9 × 7.6		
Open Area	42	%		
Product Contact Area	23	%		
Hinge Style	Ор			
Drive Method	Hinge-	000		
Rod Retention; Rod Type	Occluded edg	Occluded edge; unheaded		

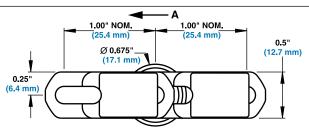
- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Available in gray polypropylene with gray rubber and white polypropylene with white rubber.
- Temperature, environmental conditions, and product characteristics affect the maximum degree of incline. Consider these factors when designing conveyor systems using these belts.
- Radius belt wearstrips are available.
- Available with hold down guides, see Hold Down Guides (2.2 Only) for details.
- Contact Intralox Customer Service before using a belt width greater than 36 in (914 mm) in a flat turning or spiral applications.
- Indent for friction surface is molded at 1.125 in (28.6 mm).
- Minimum nosebar diameter: 1.5 in (38.1 mm) with hold down guides and 1.375 in (34.9 mm) without hold down guides.

A - Preferred direction for flat turning applications


	Belt Data											
Base Belt	Base/Friction	Standard Rod Material Ø	Belt Strength		Curved Belt		Temp. Range (continuous)		Weight	Friction	Agency Acceptability	
Material	Color	0.18 in (4.57 mm)	lb/ft	kg/m	Strength	°F	°C	lb/ft²	kg/m²	Top Hardness	FDA (USA)	EU MC ^b
Polypropylene	Gray/Gray	Acetal	1200	1785		34 to	1 to	1.35	6.59	64 Shore A		
						150	66					
Polypropylene	White/White	Acetal	1200	1785	Contact	34 to	1 to	1.35	6.59	55 Shore A	а	С
					Intralox	150	66					
Polypropylene	Gray/Gray	Polypropylene	1000	1487	Customer	34 to	1 to	1.29	6.30	64 Shore A		
					Service for	150	66					
Polypropylene	White/White	Polypropylene	1000	1487	curved belt	34 to	1 to	1.29	6.30	55 Shore A	а	С
					strength	150	66					
Polypropylene	High-	Acetal	1200	1785	calculations.	34 to	1 to	1.35	6.59	59 Shore A	а	С
	Performance					212	100					
	FT Blue/Blue											

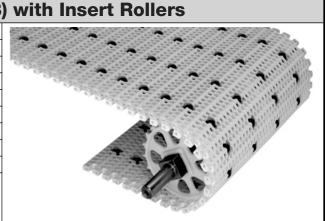
- · Fully compliant
- a FDA Compliant with Restriction: Do not use in direct contact with fatty foods.
- b European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.
- c EU compliant with Restriction: Do not use in direct contact with fatty foods.



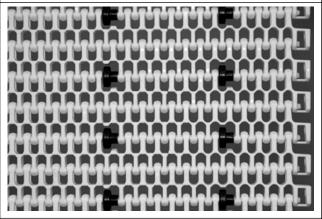

Radi	us Flush	Grid (2.4		
	in	mm		
Pitch	1.00	25.4		
Minimum Width	9	229		
Width Increments	1.00	25.4		
Opening Size (approximate)	0.35×0.30	8.9 × 7.6		
Open Area	42	%		
Product Contact Area	23%			
Hinge Style	Open			
Drive Method	Hinge-driven			
Rod Retention; Rod Type	Occluded edge; unheade			

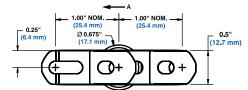
SERIES 2400

- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- · Uses acetal rollers.
- Do NOT place sprockets in line with rollers.
- · For radius applications requiring low back pressure accumulation with minimum radius of 2.4 times belt width (measured from inside edge).
- For low back pressure applications, place wearstrip between rollers. For driven applications, place wearstrip directly under rollers.
- Belts 12 in (305 mm) wide and less have a turn ratio of 1.7.
- Contact Intralox Customer Service before using a belt width greater than 24 in (610 mm) in a flat turning or spiral applications.
- Standard roller width spacings: 2 in (51 mm), 3 in (76 mm) or 4 in (102 mm).
- Standard roller row spacings: 2 in (51 mm) or 4 in (102
- Roller indents: 3.5 in (89 mm) or 4 in (102 mm) based on roller width spacing selected.

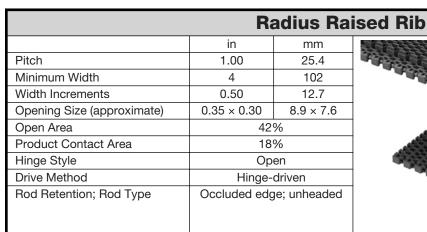


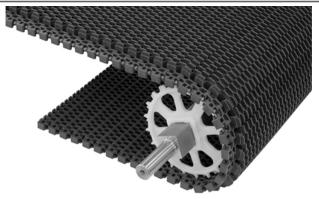
A - Preferred direction for flat turning applications

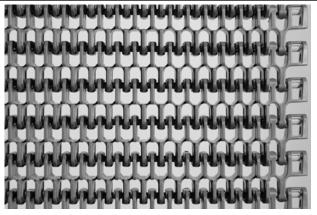

	Belt Data											
Belt material	Standard rod material Ø		Straight belt strength Ro		Indents	- Curved belt strength	Temperature range (continuous)		Belt weight			
	0.18 in (4.57 mm)	lb/ft	kg/m	in	mm	Ourved beit strength	°F	°C	lb/ft²	kg/m²		
Polypropylene	Acetal	500	744	3.5 or 4.0	89 or 102	For curved belt	34 to 200	1 to 93	1.20	5.86		
Acetal	Nylon	500	744	3.5 or 4.0	89 or 102	strength calculations,	-50 to 200	-46 to 93	1.73	8.44		
Polypropylene	Polypropylene	500	744	3.5 or 4.0	89 or 102	contact Intralox Customer Service.	34 to 220	1 to 104	1.12	5.47		

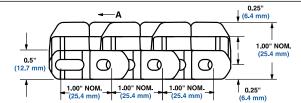


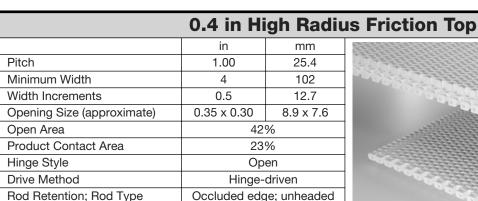
Radi	us Flush	Grid (2.8
	in	mm
Pitch	1.00	25.4
Minimum Width	6	152
Width Increments	1.00	25.4
Opening Size (approximate)	0.35×0.30	8.9 × 7.6
Open Area	42	%
Product Contact Area	23	%
Hinge Style	Ор	en
Drive Method	Hinge-	driven
Rod Retention; Rod Type	Occluded edg	ge; unheaded

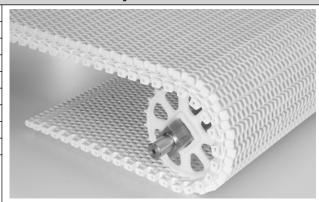


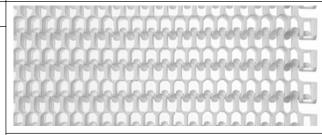

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- This belt uses the Series 2400 Radius Flush Grid (2.2) as a base. Due to roller placement, turn radius increases to 2.8.
- For low back-pressure applications, place wearstrips between rollers. For driven applications, place wearstrips under rollers.
- · Do not place sprockets in-line with rollers.
- For radius applications requiring low back-pressure accumulation with a minimum radius of 2.8 times belt width (measured from inside edge).
- Contact Intralox Customer Service before using a belt width greater than 24 in (610 mm) in flat-turning or spiral applications.
- Standard roller row spacing: 2 in (51 mm) or 4 in (102 mm).
- Standard roller width spacing: 2 in (51 mm), 3 in (76 mm), or 4 in (102 mm).
- Minimum width with hold down guides: 8 in (203 mm).
- Roller indents: 2 in (51 mm), 2.5 in (63 mm), 3 in (76 mm), or 3.5 in (89 mm) based on roller width spacing.
- Minimum roller indent with hold down guides: 3 in (76 mm).

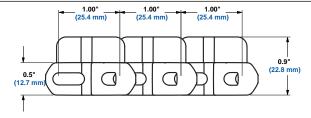



	Belt Data													
	Standard rod			raight b							Tomp	Dango		
Belt material	material Ø 0.18 in (4.57 mm)	2 in	Roller Width Spacing 2 in 51 3 in 76 4		4 in	102 mm	Roller Indents		oller Indents Curved belt strength		Temp. Range (continuous)		weight	
	111111)	lb/ft	kg/m	lb/ft	kg/m	lb/ft	kg/m	in	mm		°F	°C	lb/ft²	kg/m²
Polypropylene	Acetal	700	1040	800	1190	900	1340	2	51	F	34 to	1 to	1.21	1.21
								2.5 to 3.5	64 to 89	For curved belt	200	93		
Acetal	Nylon	1000	1490	1200	1780	1300	1940	2	51	strength	-50 to	-46	1.61	7.68
								2.5 to	64 to	calculations,	200	to 93		
								3.5	89	contact				
Polypropylene	Polypropylene	600	890	700	1040	800	1190	2	51	Intralox Customer	34 to	1 to	1.04	5.11
								2.5 to	64 to	Service.	220	104		
								3.5	89	OCIVIOC.				

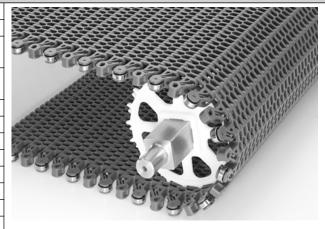

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Makes turns with an inside turn radius of 2.2 times the belt width.
- Permits airflow through the belt to provide cooling in foodprocessing applications.
- Facilitates smooth transfers of small packages with the addition of transfer plates.
- Works with standard Series 2400 wearstrips.
- Standard indent: 1.12 in (28.6 mm).
- Belt deck height: 0.5 in (12.7 mm) higher than the standard Series 2400 belt.



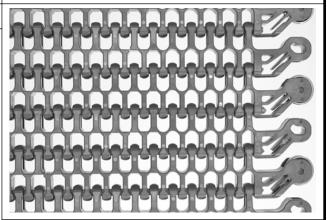

	Belt Data													
Belt material Standard rod material Ø 0.18 in (4.57 mm)		Straight belt strength		Curved belt strength	Temperat (contir	Belt weight								
	lb/ft	kg/m		°F	°C	lb/ft²	kg/m²							
Polypropylene	Acetal	1200	1785	For curved belt strength	34 to 200	1 to 93	1.98	9.68						
Acetal	Nylon	1700	2528	calculations, contact	-50 to 200	-46 to 93	3.00	14.67						
Polypropylene	Polypropylene ¹	1000	1487	Intralox Customer Service.	34 to 220	1 to 104	1.92	9.39						
HR nylon	Nylon	1700	2530	initialox oustomer dervice.	-50 to 240	-46 to 116	2.5	12.25						

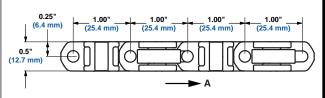

¹ Polypropylene rods can be installed in polypropylene belts when extra chemical resistance is required. Please note lower belt strength.

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Makes turns with an inside turn radius of 2.2 times the belt
- Temperature, environmental conditions, and product characteristics affect the maximum degree of incline. Consider these factors when designing conveyor systems using these belts.
- Indent for friction surface is molded at 0.95 in (24.1 mm).
- Minimum nosebar diameter: 1.375 in (34.9 mm).



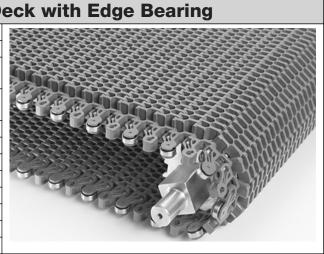
	Belt Data													
Base Belt Base/Friction Standard Rod Material Ø Belt S		Belt Strength Curv		Temp. Range (continuous)		Belt Weight		Friction	Agency Acceptability					
Material	Color	0.18 in (4.57 mm)	lb/ft	kg/m	Strength	°F	°C	lb/ft²	kg/m²	Top Hardness	FDA (USA)	EU MC ^b		
Polypropylene	White/White	Acetal	1200	1785	Contact Intralox	34 to 150	1 to 66	1.77	8.65	55 Shore A	а	С		
Polypropylene	White/White	Polypropylene	1000	1488	Customer Service for	34 to 150	1 to 66	1.69	8.25	55 Shore A	а	С		
Polypropylene	High- Performance FT Blue/Blue	Polypropylene	1200	1785	curved belt strength calculations.	34 to 212	1 to 100	1.77	8.65	59 Shore A	а	С		

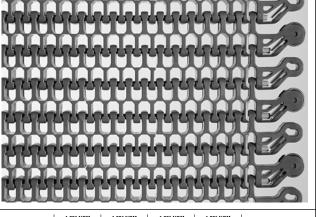

- Fully compliant
- a FDA Compliant with Restriction: Do not use in direct contact with fatty foods.
- b European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.
- c EU compliant with Restriction: Do not use in direct contact with fatty foods.

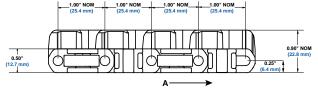


	Radiu	s with E	dge Bearing
	in	mm	
Pitch	1.00	25.4	
Minimum Width (Bearings One Side)	7.5	191	
Minimum Width (Bearings Both Sides)	9.0	229	
Maximum Width	36	914	
Width Increments	0.5	12.7	
Opening Size (approximate)	0.35 x 0.30	8.9 x 7.6	
Open Area	42	%	
Product Contact Area	23	%	
Hinge Style	Ор	en	9
Drive Method	Hinge-	driven	
Rod Retention; Rod Type	Occluded edg	ge; unheaded	

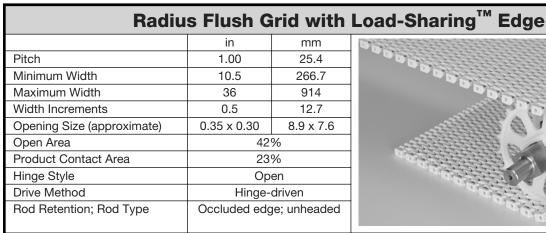
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Occluded edge rod retention allows for easier insertion and removal of rods.
- Edge bearings are only available for turning belts.
- Edge bearings are stainless steel and are retained by a plastic pin.
- Edge bearings are available on one side (for belts that turn in only one direction) or on both sides (for belts that turn in both directions). Bearings must be placed on the inside edge of the turn, and must be configured in every other row of the belt.
- Designed for radius applications with a turn radius of 2.2 times the belt width.
- Both flush edge and hold down guide edge are available for belts that have bearings on only one side and must be placed on the outside edge of the turn.
- Use the Intralox Engineering Program to determine if the Edge Bearing is suitable for your application.

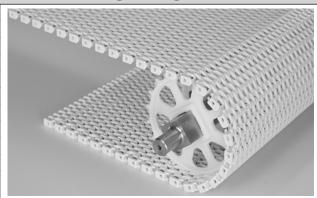


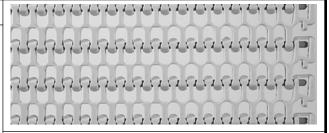

	Belt Data											
Belt material Standard rod material Ø 0.18 in (4.6 mm)	Straig stre	ht belt ngth	Curved belt strength	Temperat (contin	ure range nuous)	Belt weight						
0.18 1 (4.0 11 11)		lb/ft	kg/m		°F	°C	lb/ft²	kg/m²				
Acetal	Nylon	1700	2530	Contact Intralox Customer Service for curved belt strength calculations.	0 to 200	-18 to 93	1.59	7.76				

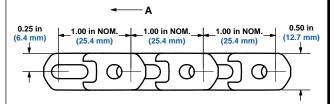


Radius	Flush Gri	d High D
	in	mm
Pitch	1.00	25.4
Minimum Width (Bearings One Side)	7.5	191
Minimum Width (Bearings Both Sides)	9.0	229
Maximum Width	36	914
Width Increments	0.5	12.7
Opening Size (approximate)	0.35 x 0.30	8.9 x 7.6
Open Area	42	%
Product Contact Area	23	%
Hinge Style	Ор	en
Drive Method	Hinge-	driven
Rod Retention; Rod Type	Occluded edg	ge; unheaded

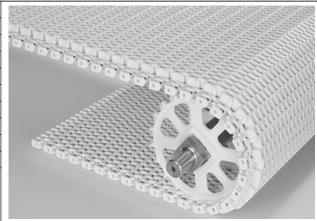



- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Occluded edge rod retention allows for easier insertion and removal of rods.
- Edge bearings are only available for turning belts.
- Edge bearings are stainless steel and are retained by plastic pins.
- Edge bearings are available on one side (for belts that turn in only one direction) or on both sides (for belts that turn in both directions). Bearings must be placed on the inside edge of the turn, and must be configured in every other row of the belt.
- Designed for radius applications with a turn radius of 2.2 times the belt width.
- Use the Intralox Engineering Program to determine if the Edge Bearing is suitable for your application.
- Belt height: 0.4 in (10 mm) higher than standard S2400 belt.
- Standard indent: 1.88 in (47.75 mm).



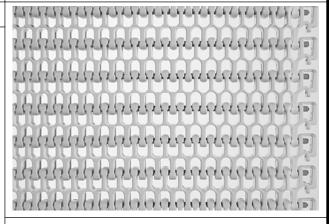

	Belt Data											
Base belt Standard rod materia 0.18 in (4.6 mm)	Standard rod material Ø	Straigl stre	ht belt ngth	Curved belt strength	Temp. (contin	Range luous) ¹	Belt w	/eight				
material 0.18 in (4.6 mm)		lb/ft kg/m			°F	°C	lb/ft²	kg/m²				
Acetal	Nylon	1700	2530	For curved belt strength calculations, contact Intralox Customer Service.	0 to 200	-18 to 93	2.83	13.82				

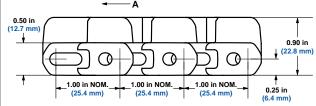
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Belt openings pass straight through the belt to simplify cleaning.
- Flush edge design features an extension to reduce the opening
- Designed for radius applications with a minimum turn radius of 2.2 times the belt width.
- Sprocket drive system minimizes wear and requires very low return-side tension.
- · Load-Sharing belt edge improves how the load is shared and minimizes fatigue failure in various areas of the belt.
- Temperature, environmental conditions, and product characteristics affect the maximum degree of incline. Consider these factors when designing conveyor systems using these belts.
- Use the Intralox Engineering Program to predict strength requirements for most radius and low-tension capstan drive spiral applications, and ensure the belt is strong enough for the application.
- Available with hold down guides.
- · Radius belt wearstrips are available.
- Minimum nosebar diameter: 1.5 in (38 mm) with hold down guides and 1.375 in (34.9 mm) without hold down guides.



				Belt Data				
Base belt	Standard rod material Ø	Straig	ht belt			Range	Belt weight	
material	0.18 in (4.6 mm)	strength		Curved belt strength	(contin	iuous)¹	Doit Weight	
material	0.18 111 (4.0 11111)	lb/ft	kg/m		°F	°C	lb/ft²	kg/m²
Polypropylene	Acetal	1200	1790		34 to 200	1 to 93	1.10	5.37
Acetal	Nylon	1700	2530	For curved belt strength	-50 to 200	-46 to 93	1.59	7.76
Polypropylene	Polypropylene	1000	1490	calculations, contact	34 to 200	1 to 104	1.04	5.10
X-Ray Detectable	X-Ray Detectable	1700	2530	Intralox Customer Service.	-50 to 200	-46 to 93	1.85	9.03
Acetal	Acetal							

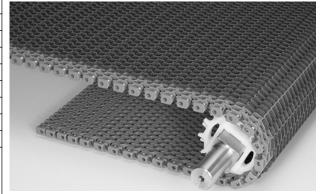
¹ Sideflexing applications must not exceed 180°F (82°C).

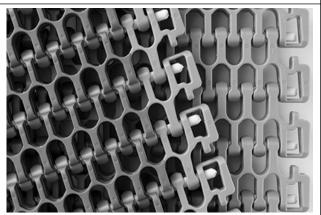


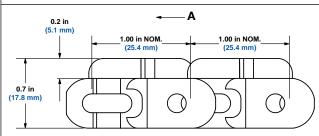

Radius Flush Grid High Deck with Load-Sharing[™] Edge in mm Pitch 1.00 25.4 Minimum Width 10.5 266.7 914 Maximum Width 36 12.7 Width Increments 0.5 Opening Size (approximate) 0.35 x 0.30 8.9 x 7.6 Open Area 42% Product Contact Area 23% Hinge Style Open Drive Method Hinge-driven Rod Retention; Rod Type Occluded edge; unheaded

Product Notes

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Belt openings pass straight through the belt to simplify cleaning.
- Flush edge design features an extension to reduce the opening
- Designed for radius applications with a minimum turn radius of 2.2 times the belt width.
- Sprocket drive system minimizes wear and requires very low return-side tension.
- · Load-Sharing belt edge improves how the load is shared and minimizes fatigue failure in various areas of the belt.
- Use the Intralox Engineering Program to predict strength requirements for most radius and low-tension capstan drive spiral applications, and ensure the belt is strong enough for the application.
- Uses a standard Series 2400 wearstrip.
- Standard indent: 0.875 in (22.2 mm).
- Load-Sharing Edge height: 0.4 in (10 mm) higher than the standard S2400 belt.




	Belt Data													
Base belt Standard rod mater material 0.18 in (4.6 mm	Standard rod material Ø	Straig stre	ht belt ngth	Curved belt strength	Temp. Rai ength (continuou		Belt w	veight						
	0.16 111 (4.6 11111)	lb/ft	kg/m		°F	°C	lb/ft²	kg/m²						
Polypropylene	Acetal	1200	1785	For curved belt strength	34 to 200	1 to 93	1.90	9.28						
Acetal	Nylon	1700	2530	calculations, contact	-50 to 200	-46 to 93	2.83	13.82						
Polypropylene	Polypropylene	1000	1487	Intralox Customer Service.	34 to 200	1 to 104	1.84	8.99						

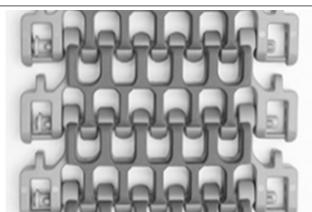


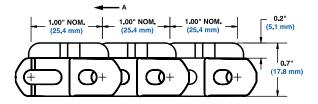
Radius Flush (Grid Frict	ion Top 2
	in	mm
Pitch	1.00	25.4
Minimum Width	10.5	266.7
Maximum Width	36.0	914.0
Opening Size (approximate)	0.35 x 0.30	8.9 x 7.6
Open Area	42	%
Product Contact Area	23	%
Hinge Style	Ор	en
Drive Method	Hinge-	driven
Rod Retention; Rod Type	Occluded edg	ge; unheaded

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Available in gray polypropylene with gray rubber and white polypropylene with white rubber.
- Belt openings pass straight through the belt to simplify cleaning.
- Flush edge design features an extension to reduce the opening size.
- Designed for radius applications with a minimum turn radius of 2.2 times the belt width.
- Sprocket drive system minimizes wear and requires very low return-side tension.
- Load-Sharing belt edge improves how the load is shared and minimizes fatigue failure in various areas of the belt.
- Temperature, environmental conditions, and product characteristics affect the maximum degree of incline. Consider these factors when designing conveyor systems using these belts.
- Available with hold down guides.
- Radius belt wearstrips are available.
- Indent for friction surface is molded at 1.125 in (28.6 mm).
- Minimum nosebar diameter: 1.5 in (38 mm) with hold down guides and 1.375 in (34.9 mm) without hold down guides.

					Belt Data							
Base Belt	Base/Friction	Standard Rod Material	Belt S	trength	Curved Belt	Temp. (contin	•	Belt \	Weight	Friction	Agei Accept	,
Material	Color	Ø 0.18 in (4.57 mm)	lb/ft	kg/m	Strength	°F	°C	lb/ft²	kg/m²	Top Hardness	FDA (USA)	EU MC ^b
Polypropylene	Gray/Gray	Acetal	1200	1790	Contact	34 to 200	1 to 93	1.35	6.59	64 Shore A		
Polypropylene	White/White	Acetal	1200	1790	Intralox Customer Service for	34 to 200	1 to 93	1.35	6.59	55 Shore A	а	С
Polypropylene	Gray/Gray	Polypropylene	1000	1490	curved belt	34 to 220	1 to 104	1.29	6.30	64 Shore A		
Polypropylene	White/White	Polypropylene	1000	1490	strength calculations.	34 to 220	1 to 104	1.29	6.30	55 Shore A	а	С

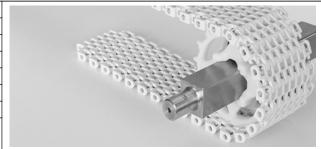
- a FDA Compliant with Restriction: Do not use in direct contact with fatty foods.
- b European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.
- c EU compliant with Restriction: Do not use in direct contact with fatty foods.




MTW Radius Flush Grid Friction Top 2.2 with Load-Sharing[™]

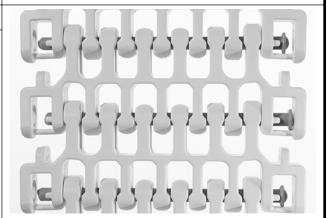
	<u> </u>	
	in	mm
Pitch	1.00	25.4
Minimum Width	4.0	101.6
Opening Size (approximate)	0.35 x 0.30	8.9 x 7.6
Open Area	42	%
Hinge Style	Ор	en
Drive Method	Hinge-	driven
Rod Retention; Rod Type	Snap-lock	; headed

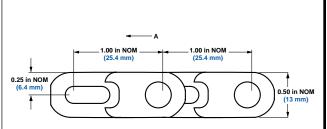
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Flush edge design features an extension to reduce the opening size.
- Available in gray polypropylene with gray rubber and white polypropylene with white rubber.
- · Designed for sideflexing applications with a standard turn ratio of 2.2 times the belt width.
- Minimum recommended turn ratio is 1.95. Contact the Intralox Technical Support Group when considering minimum turn ratio.
- · Load-sharing belt edge improves how the load is shared and minimizes fatigue failure in various areas of the belt.
- Temperature, environmental conditions, and product characteristics affect the maximum degree of incline. Consider these factors when designing conveyor systems using these belts.
- Available with hold down guides.
- Radius belt wearstrips are available.
- Available widths: 4 in (101.6 mm), 6 in (152.4 mm), 8 in (203.2 mm), and 10 in (254 mm).
- Indent for friction surface on 4-in (101.6 mm) and 6-in (152.4 mm) widths is molded at 0.70 in (17.78 mm).
- Indent for friction surface on 8-in (203.2 mm) and 10-in (254 mm) widths is molded at 0.95 in (24.1 mm).
- Maximum number of sprockets for 4 in (101.6 mm) belts without hold down guides: two. Maximum number of sprockets for 4 in (101.6 mm) belts with hold down guides: one.
- Maximum number of sprockets for 6 in (152.4 mm) belts without hold down guides: four. Maximum number of sprockets for 6 in (152.4 mm) belts with hold down guides: three.
- Maximum number of sprockets for 8 in (203.2 mm) belts with and without hold down guides: five.
- Maximum number of sprockets for 10 in (254 mm) belts with and without hold down guides: seven.
- Smallest pitch diameter sprocket for use with hold down guides: 5.1 in (130
- Minimum nosebar diameter for belts without hold down guides: 1.375 in (34.9 mm).
- Minimum nosebar diameter for belts with hold down guides: 1.50 in (38.1 mm).



A - Preferred direction for flat turning applications

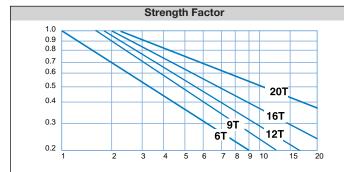
					Ве	elt Data	1						
Base belt material	Standard rod material Ø	Hold down	Straiç	ght belt si	trength lb	(kg)	Curved belt	Ten Rar (contir	nge	Ве	lt weight	lb/ft (kg/r	m)
material	0.18 in (4.6 mm)	guides	4.0 (101.6)	6.0 (152.4)	8.0 (203.2)	10.0 (254)	- strength	F°	C°	4.0 (101.6)	6.0 (152.4)	8.0 (203.2)	10.0 (254)
		Without	400 (181)	600 (272)	800 (363)	1000 (454)	For curved belt strength	34 to 220	1 to 104	0.39 (0.58)	0.60 (0.89)	0.82 (1.22)	1.01 (1.50)
Polypropylene	Nylon	With	242 (110)	600 (272)	800 (363)	1000 (454)	calculations, contact Intralox Customer Service.	34 to 220	1 to 104	0.43 (0.64)	0.65 (0.978)	0.86 (1.28)	1.06 (1.58)




MTW Radi	us Flush	Grid 2.2	with Load-Sharing [™]
	in	mm	0 6
Pitch	1.00	25.4	
Minimum Width	4.0	101.6	1888
Opening Size (approximate)	0.35 x 0.30	8.9 x 7.6	
Open Area	42	%	000
Hinge Style	Ор	en	
Drive Method	Hinge-	driven	1
Rod Retention; Rod Type	Snap-lock	k; headed	

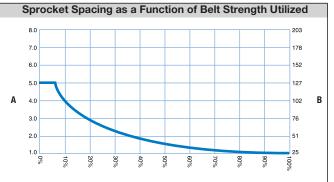
Edge

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Flush edge design features an extension to reduce the opening size.
- Designed for sideflexing applications with a standard turn ratio of 2.2 times
- Minimum recommended turn ratio is 1.95. Consult the Intralox Technical Support Group when considering minimum turn ratio.
- Load-Sharing belt edge improves how the load is shared and minimizes fatigue failure in various areas of the belt.
- Temperature, environmental conditions, and product characteristics affect the maximum degree of incline. Consider these factors when designing conveyor systems using these belts.
- Available with hold down guides.
- · Radius belt wearstrips are available.
- Available widths: 4 in (101.6 mm), 6 in (152.4 mm), 8 in (203.2 mm), and 10 in (254 mm).
- Maximum number of sprockets for 4 in (101.6 mm) belts without hold down guides: two. Maximum number of sprockets for 4 in (101.6 mm) belts with hold down guides: one.
- Maximum number of sprockets for 6 in (152.4 mm) belts without hold down guides: four. Maximum number of sprockets for 6 in (152.4 mm) belts with hold down guides: three.
- Maximum number of sprockets for 8 in (203.2 mm) belts with and without hold down guides: five.
- Maximum number of sprockets for 10 in (254 mm) belts with and without hold down guides: seven.
- Minimum nosebar diameter for belts without hold down guides: 1.375 in (34.9 mm). Minimum nosebar diameter for belts with hold down guides: 1.50 in (38.1 mm).



A - Preferred direction for flat turning applications

					Ве	elt Data	ı						
Base belt material	Standard rod material Ø	Hold down	Straiç	ght belt si	trength Ib	(kg)	Curved belt strength	Ter Rar (contir	nge	Ве	lt weight	lb/ft (kg/r	n)
matenai	0.18 in (4.6 mm)	guides	4 in (101.6)	6 in (152.4)	8 in (203.2)	10 in (254)	Suengui	°F	°C	4 in (101.6)	6 in (152.4)	8 in (203.2)	10 in (254)
Acetal	Nylon	Without	484 (220)	850 (386)	1133 (514)	1417 (643)	For curved	-50 to 200	-46 to 93	0.57 (0.85)	0.89 (1.32)	1.19 (1.77)	1.50 (2.23)
Acetai	Nylon	With	242 (110)	726 (329)	1133 (514)	1417 (643)	belt strength calculations, contact	-50 to 200	-46 to 93	0.64 (0.95)	0.96 (1.42)	1.26 (1.88)	1.56 (2.32)
Polypropylene	Nylon	Without	400 (181)	600 (272)	800 (363)	1000 (454)	Intralox Customer	34 to 220	1 to 104	0.39 (0.58)	0.60 (0.89)	0.82 (1.22)	1.01 (1.50)
Folypropylerie	NYIOH	With	242 (110)	600 (272)	800 (363)	1000 (454)	Service.	34 to 220	1 to 104	0.43 (0.64)	0.65 (0.978)	0.86 (1.28)	1.06 (1.58)


		Sprocket a	nd Support Quantity Referei	nce
Belt Wi	dth Range ¹	Minimum Number of	We	earstrips ³
in	mm	Sprockets Per Shaft ²	Carryway	Returnway
4	102	1	2	2
5	127	2	2	2
6	152	2	2	2
7	178	2	2	2
8	203	2	2	2
10	254	2	3	2
12	305	3	3	2
14	356	3	3	3
15	381	5	3	3
16	406	5	3	3
18	457	5	3	3
20	508	5	4	3
24	610	5	4	3
30	762	7	5	4
32	813	7	5	4
36	914	7	5	4
42	1067	9	6	5
48	1219	11	7	5
or other v	vidths, use an	odd number of sprockets at	Maximum 9 in (229 mm) centerline	Maximum 12 in (305 mm) centerline
Maxir	num 6 in (152 r	mm) centerline spacing	spacing	spacing

Speed/length ratio (V/L)

Divide belt speed (V) by the shaft centerline distance (L). Strength Factor is found at intersection of the speed/length ratio and the appropriate sprocket line. See Belt Selection Instructions for more information.

V = ft/min (m/min); T = number of teeth; L = ft (m)

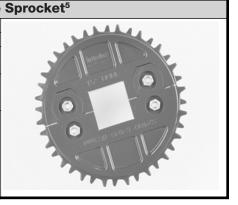
SERIES 2400

Percentage of allowable belt strength utilized

- A Sprocket spacing, in
- Sprocket spacing, mm

¹ If belt width exceeds a number listed in the table, see the sprocket and support material minimums for the next larger width range. Belts are available in 0.50 in (12.7 mm) increments beginning with minimum width of 4 in (102 mm). If the actual width is critical, contact Intralox Customer Service.

² This number is a minimum. Heavy-load applications can require additional sprockets. For lockdown location, see Retainer Rings/Center Sprocket Offset.


³ The number of wearstrips given does not include the hold down wearstrip.

							Molde	d Spro	cket¹	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable B	ore Size	s
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	Imperia	l Sizes	Metric	Sizes
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in ²	in	mm ²	mm
63, 4	2.0	51	2.0	51	.54	14	3/4		20	
(13.40%)										
93, 4	2.9	74	2.9	74	1.0	25	1	1	25	25
(6.03%)										
12	3.9	99	4.0	102	1.0	25	1 to	1.5 ⁴	25 to	40 ⁴
(3.41%)							1-1/2		40	
16	5.1	130	5.2	132	1.0	25	1 to	1.5	25 to	40
(1.92%)							1-1/2		40	
20	6.4	163	6.4	163	1.0	25	1 to	1.5	25 to	40
(1.23%)							1-1/2		40	

			5	Split (Jitra A	brasio	n Resi	istant I	Polyur	ethane
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A۱	vailable B	ore Size	S
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in	in	mm	mm
16	5.1	130	5.2	132	1.0	25		1.5 ⁶		40 ⁶
(1.92%)										
20	6.4	163	6.4	163	1.0	25		1.5		40
(1.23%)										

							Nylon (l	FDA) S	procket	7
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Av	ailable B	ore Sizes	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.		Metri	0
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round in ⁸	Square	Round	Square
Action)	in	mm	in	mm	in	mm		in	mm ⁸	mm
12	3.9	99	4	102	1.0	25	1, 1-1/4	1.5 ⁹		
(3.41%)										
16	5.1	130	5.2	132	1.0	25	1-1/4			40
(1.92%)										
20	6.4	163	6.4	163	1.0	25		1.5		
(1.23%)										

¹ Contact Intralox Customer Service for lead times. When using polyurethane sprockets, the belt strength for belts rated over 750 lb/ft (1120 kg/m) is de-rated to 750 lb/ft (1120 kg/m). All other belts maintain the published rating. The temperature range for polyurethane sprockets is 0°F (-18°C) to 120°F (49°C). Contact Intralox Customer Service for availability of polyurethane sprockets.

² Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

³ The 2.0 in (51 mm) pitch diameter 6 tooth sprocket and the 2.9 in (74 mm) pitch diameter 9 tooth sprocket have a recommended belt pull of 60 lb/sprocket (27 kg/sprocket).

 $^{^{\}rm 4}$ Do not use this sprocket with hold down guides.

⁵ Contact Intralox Customer Service for lead times. When using polyurethane sprockets, the Belt Strength for belts rated over 750 lb/ft (1120 kg/m) is de-rated to 750 lb/ft (1120 kg/m) and all other belts maintain their published rating. The temperature range for polyurethane sprockets is 0°F (-18 °C) to 120°F (49°C). Contact Intralox Customer Service for availability of polyurethane sprockets.

⁶ FDA approved sprockets are available.

⁷ Contact Customer Service for lead times.

⁸ U.S. key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

⁹ Do not use this sprocket with Hold Down Guides.

					Sp	lit Na	tural N	ylon (F	DA) Sp	orocke
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable E	ore Size	S
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in	in	mm	mm
20	6.4	163	6.4	163	1.5	38		1.5		
(1.23%)										

							Acetal S	Split Sp	procket	S ²
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Av	ailable B	ore Sizes	
Teeth	1	Pitch	Outer			Hub	U.S.		Metr	ric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round in ³	Square	Round	Square
Action)	in	mm	in	mm	in	mm		in	mm^2	mm
12	3.9	99	3.9	99	1.0	25	1-1/4	1.5 ⁴		
(3.41%)										

						GI	ass Fille	a Nyloi	n Sproc	Kets
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Av	ailable B	ore Sizes	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.		Metr	ic
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round in ⁶	Square	Round	Square
Action)	in	mm	in	mm	in	mm		in	mm^{5}	mm
16	5.1	130	5.2	132	1.0	25		1.5		40
(1.92%)										

¹ Contact Intralox Customer Service for lead times.

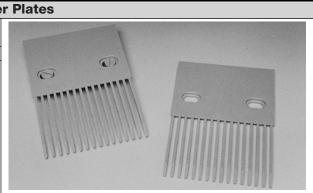
² Contact Intralox Customer Service for lead times.

³ U.S. key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

⁴ Do not use this sprocket with hold down guides.

 $^{^{\}rm 5}$ Contact Intralox Customer Service for lead times.

⁶ U.S. key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.



						Glas	s Filled N	lylon S	plit Spr	ockets
No. of		1	Nom.	1	Nom.	1			ore Sizes	
Teeth	Pitch		Outer	1	Hub	Hub	U.S.		Metr	ric
(Chordal		Dia.	Dia.	Dia.		Width	Round in ²	Square	Round	Square
Action)	in	mm	in	mm	in	mm		in	mm ⁷	mm
16	5.1	130	5.2	132	1.5	38	1-1/4		30	
(1.92%)									40	

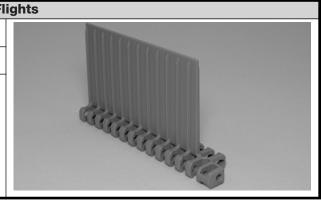
		HR Nylon EZ Clean					[™] Spro	ckets ³		
No. of		1	Nom.	1		Nom.		ailable B	ore Sizes	
Teeth			Outer			Hub	U.S.		Metr	
(Chordal		Dia.	Dia.	1			Round in ⁴	Square		Square
Action)	in	mm	in	mm	in	mm		in	mm^2	mm
16	5.1	130	5.2	132	1.0	25				40
(1.92%)										

			Finger Transfe	
Available	e Widths	Number of	Available Materials	Г
in	mm	Fingers	Available iviaterials	
4	102	16	Acetal	
 Designed for 	r use with Series	s 2400 Raised R	ib belts, to eliminate	

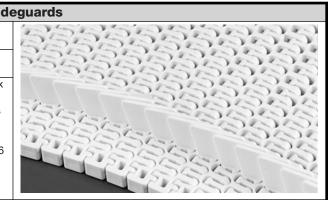
- product transfer and tipping problems.
- The fingers extend between the belt ribs, to allow a smooth continuation of the product flow as the belt engages the sprockets.
- Finger transfer plates are easily installed on the conveyor frame with conventional fasteners.

¹ Contact Intralox Customer Service for lead times.

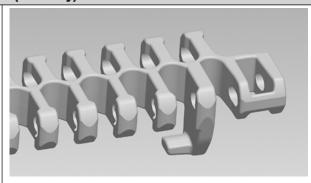
² U.S. key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

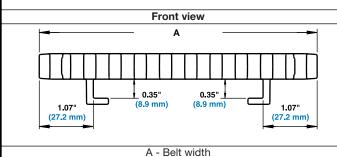

³ Contact Intralox Customer Service for lead times.

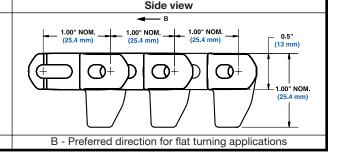
⁴ U.S. key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.


		No-Cling F
Available F	light Height	Available Materials
in	mm	Available iviaterials
3.0	76	Polypropylene, polyethylene, acetal, X-
		ray detectable acetal
• Flights do n	ot have bottom l	hold down guides, but can be used with

- the bottom hold down belt style, with a minimum flight spacing of 4 in (102 mm).
- Minimum indent: 1.125 in (29 mm).

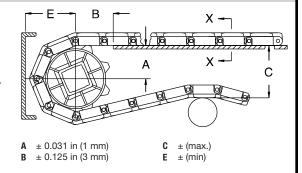

Universal Si		
Available Materials	eguard Height	Available Side
Available Materials	mm	in
Polypropylene, acetal	25	1.0
Folypropylerie, acetai	76	3.0


- Similar in design and function to other standard, overlapping Intralox sideguards. It is an integral part of the belt, fastened by hinge rods. It adds versatility to the Series 2400 belt when used in multiple rows for separating product.
- Easily cleanable. Suitable (FDA accepted) for food applications.
- Minimum indent required: 1.5 in (38 mm) for 2.2 turn ratios, 3.0 in (76 mm) for 1.7 turn ratios.



Hold Down Guides (2.2 Only)

- Materials available: polypropylene, acetal, HR nylon.
- Hold down guides are on the bottom of the belt for use when the belt edges must be clear. Also available on friction top modules.
- Hold down guides provide the ability to run two belts next to each other without a large gap in between.
- The belt edge is smooth for reduced friction, and is relatively thick to provide wear resistance and protection for the rod retention.
- Not recommended for low-tension capstan drive spiral applications.
- Cannot be used with 2 in and 2.9 in pitch diameter sprockets or 3.9 in pitch diameter square bore sprockets.
- Other sprocket PDs with large bores may not produce enough clearance between the hold down guide and shaft. Subtracting bore size from the PD easily identifies these sprockets. If the number is less than 2.0 in (51 mm), this sprocket cannot be used with hold down guides.
- Minimum nosebar diameter: 1.5 in (38.1 mm).

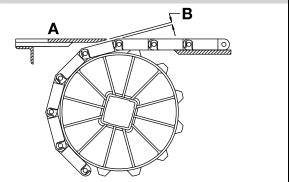


Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in

For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see Basic Conveyor Frame Requirements.


Sn	rocket De	scription	Α			3		C		Ē
	Diameter		Range (Bottor	m to Top)	_					_
in	mm	No. Teeth	in	mm	in	mm	in	mm	in	mm
		Seri	es 2400 Radius Flush		L Edge. Hold	d Down G	uides			
2.0 ¹	51 ¹	6	0.62-0.75	16-19	1.22	31	2.00	51	1.31	33
2.91	74 ¹	9	1.12-1.21	28-31	1.51	38	2.92	74	1.77	45
3.9	99	12	1.62-1.68	41-43	1.86	47	3.86	98	2.24	57
5.1	130	16	2.26-2.31	57-59	2.11	54	5.13	130	2.88	73
6.4	163	20	2.91-2.95	74-75	2.31	59	6.39	162	3.51	89
		Series 2	400 Radius Flush Grid	High Deck, 0.4	l-in High F	Radius Frid	tion Top		1	
2.01	51 ¹	6	0.62-0.75	16-19	1.22	31	2.40	61	1.71	43
2.91	74 ¹	9	1.12-1.21	28-31	1.51	38	3.32	84	2.17	55
3.9	99	12	1.62-1.68	41-43	1.86	47	4.26	108	2.64	67
5.1	130	16	2.26-2.31	57-59	2.11	54	5.53	140	3.28	83
6.4	163	20	2.91-2.95	74-75	2.31	59	6.79	172	3.91	99
		Serie	s 2400 Radius Friction	Top - with or v	vithout Ho	ld Down (Guides			
2.01	51 ¹	6	0.62-0.75	16-19	1.22	31	2.20	56	1.51	38
2.91	74 ¹	9	1.12-1.21	28-31	1.51	38	3.12	79	1.97	50
3.9	99	12	1.62-1.68	41-43	1.86	47	4.06	103	2.44	62
5.1	130	16	2.26-2.31	57-59	2.11	54	5.33	135	3.08	78
6.4	163	20	2.91-2.95	74-75	2.31	59	6.59	167	3.71	94
		Series	2400 Radius with Inse	rt Rollers (all st	yles) - Fre	e Floating	Rollers			
2.01	51 ¹	6	0.62-0.75	16-19	1.22	31	2.09	53	1.40	36
2.91	74 ¹	9	1.12-1.21	28-31	1.53	39	3.01	76	1.86	47
3.9	99	12	1.62-1.68	41-43	1.78	45	3.95	100	2.33	59
5.1	130	16	2.26-2.31	57-59	2.06	52	5.21	132	2.96	75
6.4	163	20	2.91-2.95	74-75	2.31	59	6.48	165	3.60	91
		Ser	es 2400 Radius with I	nsert Rollers (a	ll styles) -	Driven Ro	llers			
2.0 ¹	51 ¹	6	0.53-0.66	13-17	1.24	31	2.09	53	1.40	36
2.91	74 ¹	9	1.04-1.12	26-31	1.57	40	3.01	76	1.86	47
3.9	99	12	1.53-1.59	39-40	1.92	49	3.95	100	2.33	59
5.1	130	16	2.18-2.23	55-57	2.19	56	5.21	132	2.96	75
6.4	163	20	2.82-2.86	72-73	2.41	61	6.48	165	3.60	91
	•	•	Series 2	400 Radius Rai	sed Rib					
2.0	51	6	0.62-0.75	16-19	1.22	31	2.50	64	1.81	46
2.9	74	9	1.12-1.21	28-31	1.51	38	3.42	87	2.27	58
3.9	99	12	1.62-1.68	41-43	1.86	47	4.36	111	2.74	70
5.1	130	16	2.26-2.31	57-59	2.11	54	5.63	143	3.38	86
6.4	163	20	2.91-2.95	74-75	2.31	59	6.89	175	4.01	102
				2400 Radius Fla						
2.0	51	6	0.62-0.75	16-19	1.22	31	2.15	55	1.46	37
2.9	74	9	1.12-1.21	28-31	1.51	38	3.07	78	1.92	49
3.9	99	12	1.62-1.68	41-43	1.86	47	4.01	102	2.39	61
5.1	130	16	2.26-2.31	57-59	2.11	54	5.28	134	3.03	77
6.4	163	20	2.91-2.95	74-75	2.31	59	6.54	166	3.66	93

A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

SERIES 2400

When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.

A Top surface of dead plate

B Dead plate gap

	Sprocket Description		Ga	р
Pitch D	iameter	No. Teeth	in	mm
in	mm	No. reeur	""	""""
2.0	51	6	0.134	3.4
2.9	74	9	0.088	2.2
3.9	99	12	0.065	1.7
5.1	130	16	0.050	1.3
6.4	163	20	0.039	1.0

Hold Down Rails and Wearstrips

Intralox recommends using continuous hold down rails through an entire turn. Start the rails before the turn, at a distance of 1X the belt width. End the rails after the turn, at a distance of 1X the belt width. This applies to both carryway and returnway. The use of hold down rails along both side of the belt over the full carryway is recommended but not mandatory.

The hold down guide design allows the belt to be held down without the wearstrip interfering with the carryway surface. For design guidelines regarding Series 2400 with hold down guides, contact the Intralox Technical Support Group. See Custom Wearstrips.

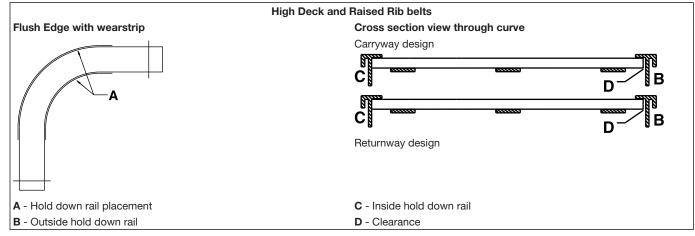


Figure 8: Hold down rails and wearstrips for Series 2400 flat-turn, High Deck, and Raised Rib belts

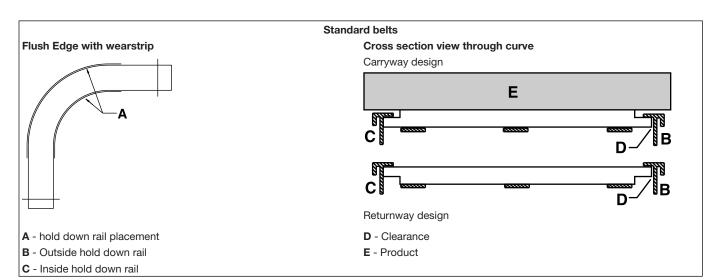
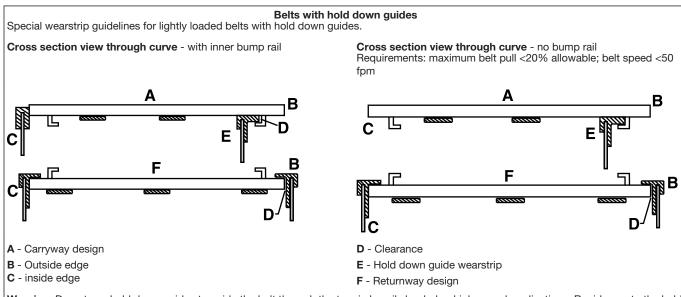



Figure 9: Hold down rails and wearstrips for Series 2400 flat-turn, standard belts

Warning: Do not use hold down guides to guide the belt through the turn in heavily loaded or high-speed applications. Rapid wear to the hold down guides and/or wearstrip occurs in applications with high loads or speeds. do not use hold down guides to hold the belt down through a negative transition. Contact Intralox Customer Service for a belt pull analysis.

Figure 10: Hold down rails and wearstrips for series 2400 flat-turns - belts with hold down guides

Belt Selection Instructions

For assistance with radius belt and low-tension capstan drive spiral selections, contact Intralox Customer Service Technical Support Group. Run the Engineering Program to ensure that the belt is strong enough for the radius application in question. See Engineering Program Analysis for Spiral and Radius for more information.

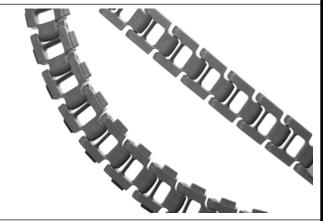
Series 2400 Design Guide Summary

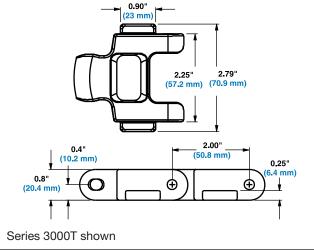
For more information, see the Installation, Maintenance & Troubleshooting Manual available from Intralox.

- times the belt width, measured from the inside edge. For the tight turning style, the minimum turn radius is 1.7 times the belt width.
- B The minimum straight run required between turns of opposing direction is 2.0 times the belt width. Shorter straight sections lead $\, {f F} \,$ to high wear on the edge guide rail and high pull stresses in the belt.
- There is no minimum straight run required between turns that are I in the same direction.
- D The minimum final straight run (leading to the drive shaft) is a minimum of 5 ft (1.5 m). If 5 ft (1.5 m) is not feasible, shorter distances (down to 1.5 times the belt width) require a weighted take up to avoid sprocket wear and tracking problems. See Special Take-up Arrangements.
- A The minimum turn radius for the standard edge Series 2400 is 2.2 E The minimum length of the first straight run (immediately after the idle shaft) is 1.5 times the belt width. When shorter lengths are required (down to 1.0 times the width), an idle roller can be used in place of sprockets.
 - idle shaft
 - G first turn
 - Н belt width
 - belt travel
 - second turn
 - K drive motor
 - L drive shaft



Figure 11: Typical two-turn radius layout


		Knuckle
	in	mm
Pitch	2.00	50.8
Molded Width	2.25	57
Open Area	-	
Hinge Style	Clos	sed
Drive Method	Center-	-driven
Rod Retention; Rod Type	Press fit; k	nurled pin

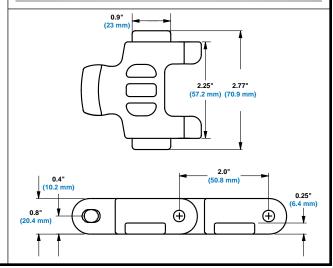


- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Thick, durable plastic surface around stainless steel pins for long life and less breakage.
- Can run on the same tracks as other common chains.
- Available in both straight and turning versions.
- Both versions are available with extended pins.
- The turning version is designed for applications with a minimum centerline turn radius of 16 in (406 mm).
- Available in 10 ft (3 m) boxed lengths.

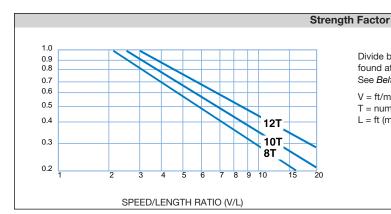
Note: Only the Series 3000T (turning version) Knuckle Chain can be used for turning applications. The Series 3000S (straight version) Knuckle Chain cannot be used for turning applications.

Warning: Hold down wearstrips are mandatory on the inside and outside edges of all turns, on both the carrying and return sides of the belt. Use hold down wearstrips throughout the conveyor, to protect the belt and personnel next to the conveyor, unless the wearstrips interfere with the operation of the carrying equipment.

	Belt D	Data					
Chain Material	Standard Rod Material Ø 0.25 in (6.4 mm)	Chain S	Strength	Temperatu (contin	•	Chain \	Weight
	111 (0.4 11111)	lb	kg	°F	°C	lb/ft	kg/m
Acetal (Straight)	303 SS	700	317	-50 to 200	-46 to 93	0.88	1.21
Acetal (Turning)	303 SS	560	254	-50 to 200	-46 to 93	0.90	1.25


		Mesh
	in	mm
Pitch	2.00	50.8
Minimum Width	2.3	57.2
Opening Sizes (approx.)	-	-
Hinge Style	Clos	sed
Drive Method	Center-	-driven
Rod Retention; Rod Type	Press fit; k	nurled pin

- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- · Mesh Top design eliminates open area for improved worker safety.
- Thick, durable plastic surface around stainless steel pins provides long life and less breakage.
- Can run on the same tracks as other common chains.
- Improved design simplifies cleaning.
- Available in both straight and turning versions.
- Both versions are available with extended pins.
- Turning version designed for applications with a minimum centerline turn radius of 16 in (406 mm).
- Available in 10 ft (3 m) boxed lengths.
- Note: Only the Series 3000T (turning version) Mesh Top chain can be used for turning applications. The Series 3000S (straight version) Mesh Top chain cannot be used for turning applications.


Warning: Hold down wearstrips are mandatory on the inside and outside edges of all turns, on both the carrying and return side of the belt. Unless they interfere with the operation of the carrying equipment, use the hold down wearstrips throughout the conveyor to protect the belt and personnel next to the conveyor.

		Belt Data					
Chain Material	Standard rod material 0.25 in (6.4 mm)	Chain S	Strength		ture range nuous)	Chain \	Neight
	0.23 11 (0.4 11111)	lb	kg	°F	°C	lb./ft. ²	kg/m²
Acetal (Straight)	303 SS	700	318	-50 to 200	-46 to 93	0.89	1.32
Acetal (Turning)	303 SS	560	254	-50 to 200	-46 to 93	0.91	1.36

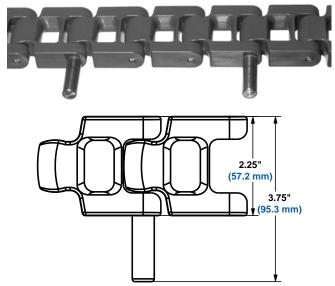
Divide belt speed "V" by the shaft centerline distance "L". Strength Factor is found at intersection of speed/length ratio and appropriate sprocket line. See Belt Selection Instructions for more information.

V = ft/min (m/min)

T = number of teeth

L = ft (m)

	Chai	in Pull I	Limit with	UHMW P	olyethyle	ne Spro	ckets, E	Based o	n Bore	Size -	lb (kg)	
No. of Teeth	Nom. Diam		1.5 in s	quare	40 mm s	quare	1 in ro	ound	1.25 in	round	1.5 in ro	und
	in	mm	lb	kg	lb	kg	lb	kg	lb	kg	lb	kg
8	5.2	132	640	290	640	290	74	34	90	41	162	74
10	6.5	165	520	236	520	236	78	35	95	43	172	78
12	7.7	196	432	196	432	196	65	29	79	36	143	65


							/ D . L .	11. 1		.1 .11
						UHMW	Polye	thylen	e Spro	скет'
No. of	Nom.	Nom.		Nom.	Nom.	Nom.	om. Available Bore Sizes			
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in ²	in	mm ²	mm
8	5.2	132	5.3	135	1.5	38	1-1/4	1.5		40
(7.61%)										
Square										
Bore										
8	5.2	132	5.3	135	1.2	30	1-1/4	1.5		40
(7.61%)										
Round										
Bore										
10	6.5	165	6.7	170	1.5	38	1-1/4	1.5		40
(4.89%)										
12	7.7	196	8.0	203	1.5	38	1-1/4	1.5		40
(3.41%)										

¹ Contact Customer Service for lead times.

² Imperial key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.

Extended Pins and Tabs

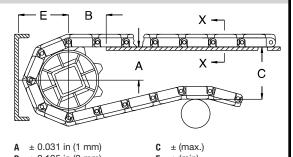

EXTENDED PINS — Modules with 303 stainless steel extended pins can be spliced into both the basic turning and straight running chains. These pins are commonly used in side by side chain strands where rollers are used for low back pressure applications. The minimum extended pin spacing is 2.0 in (50.8 mm). The extended pin modules can be spliced into the standard chain every 2.0 in (50.8 mm).

Extended pins for straight or turning versions

EXTENDED TABS — Modules with extended tabs can be spliced into both the basic turning and straight running chains. These extended tabs can be used to attach flights, cleats, etc. The extended tab modules are based on the turning chain design, so the rating for the turning chain should be used even if the extended tab modules are spliced into straight running chain The minimum tab spacing is 2.0 in (50.8 mm). The tabs can be spliced into the standard chain every 2.0 in (50.8 mm).

Extended tabs for straight or turning versions

Intralox offers only extended tabs and extended pins. Attachments for either of these accessories are not available through Intralox. Contact Customer Service for lead times.



Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in anv design.

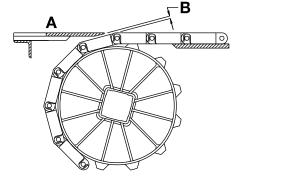
For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see Basic Conveyor Frame Requirements.

± 0.125 in (3 mm)

± (min)

SERIES 3000


Sp	rocket Des	scription	Α		В		С		E			
Pitch D	Diameter	No. Teeth	Range (Botto		Io. Teeth Range (Bottom to Top) in mm	(Bottom to Top)		mm	in	mm	in	mm
in	mm	No. reeur	in	mm	""	111111	""	111111	""	mm		
	Series 3000 Knuckle Chain				Mesh Top	p						
5.2	132	8	2.01-2.21	51-56	2.29	58	5.23	1.33	3.14	80		
6.5	165	10	2.68-2.84	68-72	2.63	67	6.47	164	3.76	96		
7.7	196	12	3.33-3.46	85-88	2.94	75	7.73	196	4.39	112		

Dead Plate Gap

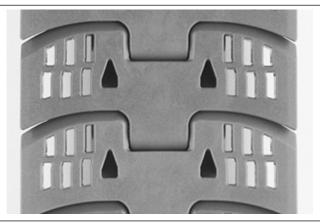
A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

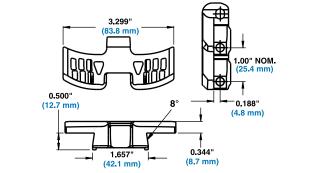
When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.

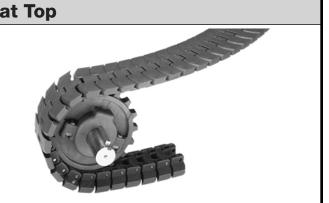
A Top surface of dead plate

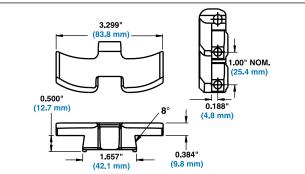
B Dead plate gap


	Sprocket Description	Ga	p		
Pitch D	iameter	No. Teeth	in	mm	
in	mm	No. reeur	ın	""""	
5.2	132	8	0.200	5.1	
6.5	165	10	0.158	4.0	
7.7	196	12	0.132	3.4	



Flush Grid
n
4
No. Com
TO CHIEF TO
n

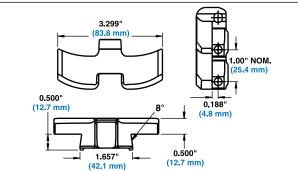

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Corner Tracks, with bevel design, are mandatory on the inside edges of all turns.
- Use the Intralox Engineering Program to calculate the estimated belt pull for your application. Contact Intralox Customer Service for more information.
- Uses S1400 sprockets.
- All Series 1400 and Series 4000 sprockets are split, so shafts do not have to be removed for retrofits and changeovers.
- Same deck thickness as the straight-running belt counterpart Series 900 FG [0.344 in (8.7 mm)].
- Available in 10 ft (3 m) boxed lengths.
- Designed for applications with a minimum centerline turn radius of 18 in (457 mm).


	Belt Data									
Belt material Belt Width		Nidth	/idth Standard rod material Ø 0.25 in (6.4 mm)		Belt strength		Temperature range (continuous)		Belt weight	
	in	mm	0.23 1 (0.4 11 11)	lb	kg	°F	°C	lb/ft	kg/m	
Acetal	3.3	84	303 SS	500	227	-50 to 200	-46 to 93	0.97	1.44	
HHR nylon	3.3	84	303 SS	500	227	-50 to 310	-46 to 154	0.97	1.44	

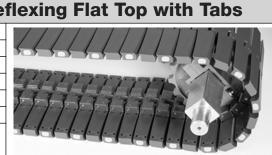
		S4009 Fla
	in	mm
Pitch	1.00	25.4
Molded Width	3.3	84
Open Area	09	%
Hinge Style	Clos	sed
Drive Method	Hinge-	driven
Rod Retention; Rod Type	Press fit; k	nurled pin

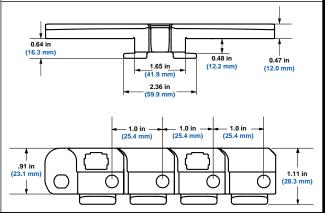
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a helt.
- Corner Tracks, with bevel design, are mandatory on the inside edges of all turns.
- Uses S1400 sprockets.
- All Series 1400 and Series 4000 sprockets are split, so shafts do not have to be removed for retrofits and changeovers.
- Use the Intralox Engineering Program to calculate the estimated belt pull for your application. Contact Intralox Customer Service for more information.
- See the belt data table for minimum centerline turn radius.
- Same deck thickness as the straight running belt counterpart Series 900 FT [0.384 in (9.8 mm)].
- Available in 10 ft (3 m) boxed lengths.
- Designed for applications with a minimum centerline turn radius of 18 in (457 mm).

	Belt Data								
Belt material			Standard rod material Ø 0.25 in (6.4 mm)	Belt strength		Temperature range (continuous)		Belt weight	
	in	mm	0.23 111 (0.4 11111)	lb	kg	°F	°C	lb/ft	kg/m
Acetal	3.3	84	303 SS	500	227	-50 to 200	-46 to 93	1.11	1.65
HHR nylon	3.3	84	303 SS	500	227	-50 to 310	-46 to 154	0.98	1.46



	;	S4014 FI	8
	in	mm	
Pitch	1.00	25.4	
Molded Width	3.3	84	
Open Area	09	%	
Hinge Style	Clos	sed	
Drive Method	Hinge-	driven	
Rod Retention; Rod Type	Press fit; k	nurled pin	

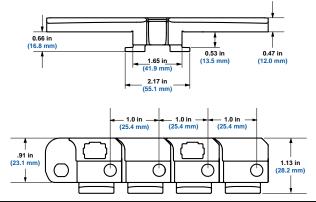

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Corner tracks, with bevel design, are mandatory on the inside edges of all turns.
- Use the Intralox Engineering Program to calculate the estimated belt pull for your application. Contact Intralox Customer Service for more information.
- Uses S1400 sprockets.
- All Series 1400 and Series 4000 sprockets are split, so shafts do not have to be removed for retrofits and changeovers.
- Same deck thickness as the straight-running belt counterpart, Series 1400 Flat Top: (0.5 in (12.7 mm).
- Available in 10 ft (3 m) boxed lengths.
- Designed for applications with a minimum centerline turn radius of 18 in (457 mm).


	Belt Data								
Belt material	Belt Width		Standard rod material Ø 0.25 in (6.4 mm)	Belt strength		Temperature range (continuous)		Belt weight	
	in	mm	0.23 111 (0.4 11111)	lb	kg	°F	°C	lb/ft	kg/m
Acetal	3.3	84	303 SS	500	227	-50 to 200	-46 to 93	1.29	1.92

\$4030 7. 5	-in ProTra	ax [™] Side
	in	mm
Pitch	1.00	25.4
Molded Width	7.5	191.0
Open Area	09	%
Hinge Style	Clos	sed
Drive Method	Hinge-	driven
Rod Retention; Rod Type	Press fit; k	nurled pin

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Two powerful, blue, Teflon-coated magnets embedded in each module (one magnet per wing).
- Blue, metal detectable, nylon caps retain magnets in modules.
- Hold down tabs match dimensions of S4090.
- Thicker deck than Series 409X Flat Top for increased wear resistance.
- Standard configuration consists of alternating rows of magnetic modules and Series 403X Sideflexing Flat Top modules.
- Needs only one drive and idle sprocket per belt strand.
- Determine belt spacing based on maximum surface contact with the bottom surface of the conveyed product.
- Ideal for incline, decline, vertical switch, and other applications.
- Uses Series 1400/Series 4000 sprockets.
- Minimum sprocket pitch diameter: 3.9 in (99.0 mm).

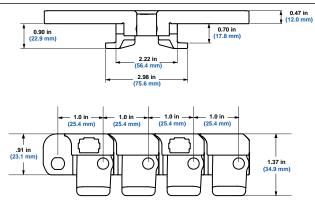
Belt Data									
Belt material	Belt \	Nidth	Standard rod material Ø	Belt strength		Temperature range (continuous)		Belt weight	
	in	mm	0.25 in (6.4 mm)	lb	kg	°F	O°	lb/ft	kg/m
HHR nylon	7.5	191.0	303 SS	500	227	-50 to 310	-46 to 154	2.44	3.63



S4031 7.5	in ProTra	eflexing Flat Top with Tabs	
	in	mm	77777777711115
Pitch	1.00	25.4	
Molded Width	7.5	191.0	
Open Area	09	%	
Hinge Style	Clos	sed	
Drive Method	Hinge-	driven	
Rod Retention; Rod Type	Press fit; k	nurled pin	

- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Two powerful, blue, Teflon-coated magnets embedded in each module (one magnet per wing).
- Blue, metal-detectable, nylon caps retain magnets in modules.
- Hold down tabs match dimensions of S4091.
- Thicker deck than S409X Flat Top for increased wear
- Standard configuration consists of alternating rows of magnetic modules and S403X Sideflexing Flat Top modules.
- Needs only one drive and idle sprocket per belt strand.
- Determine belt spacing based on maximum surface contact with the bottom surface of the conveyed product.
- Ideal for incline, decline, vertical switch, and other applications.
- Uses Series 1400/Series 4000 sprockets.
- Minimum sprocket pitch diameter: 3.9 in (99.0 mm).

Belt Data										
Belt material	Belt \	Nidth	Standard rod material Ø 0.25 in (6.4 mm)			Temperat (contir	Belt w	Belt weight		
	in	mm	0.25 1 (6.4 11 11)	lb	kg	°F	°C	lb/ft	kg/m	
HHR nylon	7.5	191.0	303 SS	500	227	-50 to 310	-46 to 154	2.44	3.63	

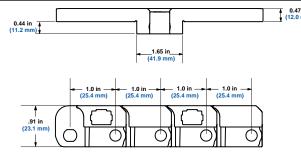


\$4032 7.5	-in ProTra	ax [™] Side
	in	mm
Pitch	1.00	25.4
Molded Width	7.5	191.0
Open Area	09	%
Hinge Style	Clos	sed
Drive Method	Hinge-	driven
Rod Retention; Rod Type	Press fit; k	nurled pin

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Two powerful, blue, Teflon-coated magnets embedded in each module (one magnet per wing).
- Blue, metal-detectable, nylon caps retain magnets in modules.
- Hold down tabs match dimensions of S4092.
- Thicker deck than Series 409X Flat Top for increased wear resistance.
- Standard configuration consists of alternating rows of magnetic modules and Series 403X Sideflexing Flat Top modules.
- Needs only one drive and idle sprocket per belt strand.
- Determine belt spacing based on maximum surface contact with the bottom surface of the conveyed product.
- Ideal for incline, decline, vertical switch, pan indexing, metering, de-lidding, and radius applications.
- Uses Series 1400/Series 4000 sprockets.
- Minimum sprocket pitch diameter: 5.1 in (129.5 mm).

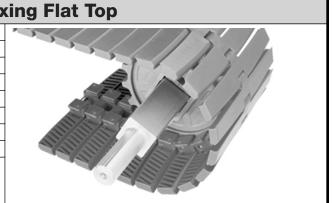


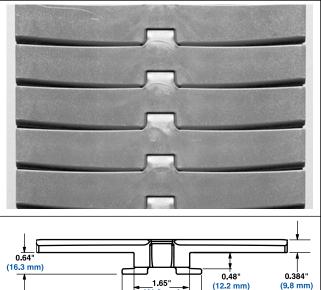
	Belt Data										
Belt material	Belt \	Nidth	Standard rod material Ø	Belt st	rength	Temperature range (continuous) Belt weig		/eight			
	in	mm	0.25 in (6.4 mm)	lb	kg	°F	°C	lb/ft	kg/m		
HHR nylon	7.5	191.0	303 SS	500	227	-50 to 310	-46 to 154	2.66	3.95		



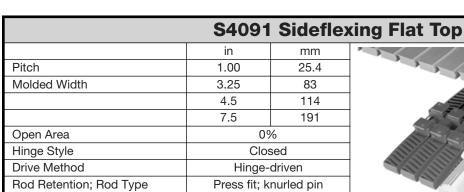
\$403	3 7.5-in F	ProTrax [™]
	in	mm
Pitch	1.00	25.4
Molded Width	7.5	191.0
Open Area	09	%
Hinge Style	Clos	sed
Drive Method	Hinge-	driven
Rod Retention; Rod Type	Press fit; k	nurled pin

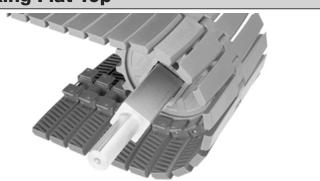
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a helt.
- Two powerful, blue, Teflon-coated magnets are embedded in each module (one magnet per wing).
- Blue, metal detectable, nylon caps retain magnets in modules.
- Thicker deck than Series 409X Flat Top for increased wear resistance.
- Ideal for incline, decline, vertical switch, and other applications.
- Standard configuration consists of alternating rows of magnetic modules and Series 403X Sideflexing Flat Top modules.
- Needs only one drive and idle sprocket per belt strand.
- Determine belt spacing based on maximum surface contact with the bottom surface of the conveyed product.
- Uses Series 1400/Series 4000 sprockets.
- Minimum sprocket pitch diameter: 3.9 in (99.0 mm).

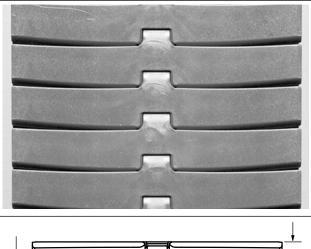


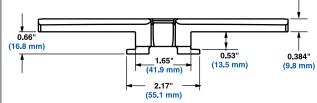

Belt Data											
Belt material	Belt Width		Standard rod material Ø 0.25 in (6.4 mm)	Belt st	rength	Temperature range (continuous)		Belt w	Belt weight		
	in	mm	0.25 111 (0.4 11111)	lb	kg	°F	ů	lb/ft	kg/m		
HHR nylon	7.5	191.0	303 SS	500	227	-50 to 310	-46 to 154	2.29	3.41		

	S4090	Sideflex			
	in	mm			
Pitch	1.00	25.4			
Molded Width	3.25	83			
	4.5	114			
	7.5	191			
Open Area	09	%			
Hinge Style	Clos	sed			
Drive Method	Hinge-driven				
Rod Retention; Rod Type	Press fit; k	nurled pin			

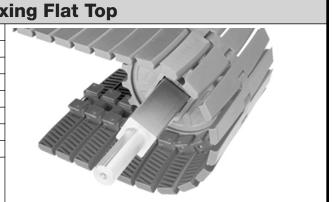


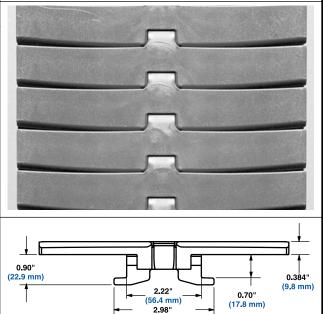

- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Series 4000 belts use Series 1400 sprockets.
- All sprockets feature a split design. so shafts do not have to be removed for retrofits and changeovers.
- Use the Intralox Engineering Program to calculate the estimated belt pull for your system. Contact Intralox Sales Engineering for assistance.
- · See Belt Data for minimum centerline turn radius.
- Same deck thickness as the straight-running counterpart, Series 900 Flat Top [0.384 in (9.8 mm)].
- Available in 10 ft (3 m) increments.


2.36" (59.9 mm)


	Belt Data											
Belt material Belt width		Selt width Standard pin material Ø 0.25 in (6.4 mm)		Belt strength		Temperature range (continuous)		Belt v	veight	Minimum centerline turn radius		
	in	mm		lb	kg	°F	°C	lb/ft	kg/m	in	mm	
Acetal	3.25	83	303 SS	500	227	-50 to 200	-46 to 93	1.21	1.80	18	457	
Acetal	4.5	114	303 SS	500	227	-50 to 200	-46 to 93	1.40	2.08	18	457	
Acetal	7.5	191	303 SS	500	227	-50 to 200	-46 to 93	1.86	2.77	24	610	
HR nylon	3.25	83	303 SS	500	227	-50 to 240	-46 to 116	1.02	1.52	18	457	
HR nylon	7.5	191	303 SS	500	227	-50 to 240	-46 to 116	1.54	2.29	24	610	
HHR nylon	3.25	83	303 SS	500	227	-50 to 310	-46 to 154	1.04	1.55	18	457	
HHR nylon	4.5	114	303 SS	500	227	-50 to 310	-46 to 154	1.18	1.76	18	457	
HHR nylon	7.5	191	303 SS	500	227	-50 to 310	-46 to 154	1.57	2.34	24	610	

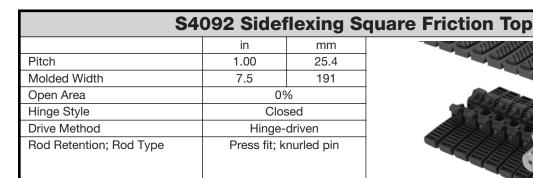
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Series 4000 belts use Series 1400 sprockets.
- All sprockets feature a split design, so shafts do not have to be removed for retrofits and changeovers.
- See Belt Data for minimum centerline turn radius.
- Use the Intralox Engineering Program to calculate the estimated belt pull for your system. Contact Intralox Sales Engineering for assistance.
- Same deck thickness as the straight running belt counterpart, Series 900 Flat Top [0.384 in (9.8 mm)].
- Available in 10 ft (3 m) increments.




	Belt Data											
Belt material Belt width		Belt width Standard pin material Ø Boundard Din material Di		Belt st	rength	Temperature range (continuous)		Belt v	veight	cente	mum erline adius	
	in	mm		lb	kg	°F	°C	lb/ft	kg/m	in	mm	
Acetal	3.25	83	303 SS	500	227	-50 to 200	-46 to 93	1.22	1.81	18	457	
Acetal	4.5	114	303 SS	500	227	-50 to 200	-46 to 93	1.40	2.08	18	457	
Acetal	7.5	191	303 SS	500	227	-50 to 200	-46 to 93	1.84	2.74	24	610	
HR nylon	3.25	83	303 SS	500	227	-50 to 240	-46 to 116	1.02	1.52	18	457	
HR nylon	7.5	191	303 SS	500	227	-50 to 240	-46 to 116	1.54	2.29	24	610	
HHR nylon	3.25	83	303 SS	500	227	-50 to 240	-46 to 116	1.04	1.55	18	457	
HHR nylon	4.5	114	303 SS	500	227	-50 to 310	-46 to 154	1.18	1.76	18	457	
HHR nylon	7.5	191	303 SS	500	227	-50 to 310	-46 to 154	1.57	2.34	24	610	

	\$4092	Sideflex
	in	mm
Pitch	1.00	25.4
Molded Width	3.25	83
	4.5	114
	7.5	191
Open Area	09	6
Hinge Style	Clos	sed
Drive Method	Hinge-	driven
Rod Retention; Rod Type	Press fit; k	nurled pin

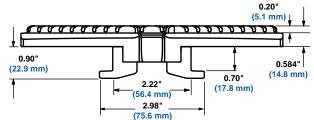
- Always check with Customer Service for precise belt measurements and stock status before designing a conveyor or ordering a belt.
- Uses the same sprockets as S1400 and S4000.
- All sprockets feature a split design, so shafts do not have to be removed for retrofits and changeovers.
- Same deck thickness as the straight-running counterpart S900 *Flat Top*: 0.384 in (9.8 mm).
- Use the Intralox Engineering Program to calculate the estimated belt pull for your system. Contact Intralox Sales Engineering for assistance.
- 3.9 in (99 mm) pitch diameter sprockets are not compatible with S4092 belts.
- Available in 10 ft (3 m) increments.

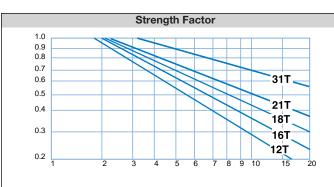


(75.6 mm)

					В	elt Data										
Belt material	Belt width		Belt width		Standard Pin Material		elt ngth		Temperature range (continuous)		Belt weight		Minimum centerline turn radius		Agency acceptability	
	in	mm	- Ø 0.25 in (6.4 mm)	lb	kg	°F	°C	lb/ft	kg/m	in	mm	FDA (USA)	J ¹	EU MC ²		
Acetal	3.25	83	303 SS	500	227	-50 to 200	-46 to 93	1.43	2.13	18	457	•	•	•		
Acetal	4.5	114	303 SS	500	227	-50 to 200	-46 to 93	1.61	2.40	18	457	•	•	•		
Acetal	7.5	191	303 SS	500	227	-50 to 200	-46 to 93	2.05	3.05	24	610	•	•	•		
HR nylon	3.25	83	303 SS	500	227	-50 to 240	-46 to 116	1.26	1.87	18	457	•		•		
HR nylon	7.5	191	303 SS	500	227	-50 to 240	-46 to 116	1.71	2.55	24	610	•		•		
HHR nylon	3.25	83	303 SS	500	227	-50 to 310	-46 to 154	1.28	1.92	18	457	•		•		
HHR nylon	4.5	114	303 SS	500	227	-50 to 310	-46 to 154	1.40	2.08	18	457	•		•		
HHR nylon	7.5	191	303 SS	500	227	-50 to 310	-46 to 154	1.80	2.68	24	610	•		•		

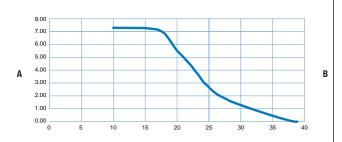
¹ Japan Ministry of Health, Labour, and Welfare


² European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.


- Always check with Customer Service for precise belt measurements and stock status before designing a conveyor or ordering a belt.
- Available in blue acetal with black rubber.
- Use the same sprockets as S1400 and S4000.
- Sprockets feature a split design, so shafts do not have to be removed for retrofits and changeovers.
- Use the Intralox Engineering Program to calculate the estimated belt pull for your system. Contact Intralox Sales Engineering for assistance.
- 3.9 in (99 mm) pitch diameter sprockets are not compatible with S4092 belts.
- Available in 10 ft (3 m) increments.

							Belt D	ata							
Base Belt Material in mm Base/ Friction Color Color Rod Material Strength (continuo 6.4 mm) Ib kg °F	Belt Width			Base/ Rod Material			Temp. Range (continuous)		Belt Weight		Friction Top Hardness	Minimum Centerline Turn Radius		Agency Acceptability	
	°C	lb/ft	kg/m	Hardness	in	mm	FDA (USA)	EU MC ^b							
Acetal	7.5	191	Blue/ Black	303 SS	500	227	-10 to 130	-23 to 54	2.35	3.50	54 Shore A	24	610	а	С

- · Fully compliant
- a FDA Compliant with Restriction: Do not use in direct contact with fatty foods.
- b European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.
- c EU compliant with Restriction: Do not use in direct contact with fatty foods.

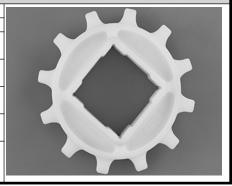


SPEED/LENGTH RATIO (V/L)

Divide belt speed "V" by the shaft $\ensuremath{\mathbb{C}}$ distance "L". Strength Factor is found at intersection of speed/length ratio and appropriate sprocket line. See Belt Selection Instructions for more information.

V = ft/min (m/min) T = number of teeth L = ft (m)

S4032 ProTrax with Tabs and S4033 ProTrax Magnet Force vs. Metal Thickness



METAL THICKNESS (STEEL GAUGE) A = MAGNET FORCE, (lbf)

B = MAGNET FORCE, (N) Note: Magnet force shown is for a single magnet within one wing of one module, using a flat pan.

Results will vary for different pan styles and surface textures.

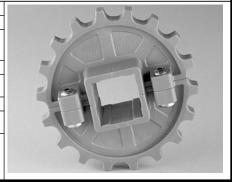
							Molded	d Spro	cket1	
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A۱	/ailable B	ore Size	S
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S	S.	Me	tric
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square
Action)	in	mm	in	mm	in	mm	in	in	mm	mm
12	3.9 ²	99 ²	3.9	99	1.5	38	-	1.5	-	40
(3.41%)										
15	4.9	124	4.9	124	1.5	38		2.5		60
(2.19%)										
18	5.7	145	5.8	148	1.5	38	2	2.5	30, 40,	60
(1.52%)									50	
24	7.7	196	7.8	198	1.5	38		2.5		60
(0.86%)										

						N	ylon FDA	Split	Sprocke ⁻	ts³
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Av	ailable E	Bore Sizes	
Teeth	Pitch	Pitch	Outer	Outer		Hub	U.S.		Metri	С
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round in ⁴	Square	Round	Square
Action)	in	mm	in	mm	in	mm		in	mm ⁴	mm
16 (1.92%)	5.1	130	5.2	132	1.5	38	1 to 2, in 1/16-inch increments	1.5	25 to 50, in 5- mm increments	40

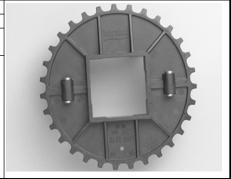
Maxi	Maximum Load per Glass Filled Nylon Split Sprocket Based on Round Bore Size Range - Ib (kg)													
No. of	Nom.	Pitch	1 in - 1-	3/16 in	1-1/4 in	- 1-3/8	1-7/16	3 in -	1-13/16 i	n - 2 in	25 mm -3	5 mm	40 mm -	50 mm
Teeth	Diam	neter			in		1-3/	4 in						
	in	mm	lb	kg	lb	kg	lb	kg	lb	kg	lb	kg	lb	kg
18	5.7	145	300	135	340	155	400	180	540	245	240	110	410	185
21	6.7	170	225	102	275	124	350	158	500	226	175	79	400	181

¹ Contact Customer Service for lead times.

² 3.9PD sprockets are not compatible with Series 4092 belts.


³ Contact Intralox Customer Service for lead times.

⁴ U.S. key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.



	Glass Filled Nylon Split Sprockets ¹												
No. of Teeth (Chordal Action) 18 (1.52%)	Pitch		Nom. Outer Dia. in 5.8		Nom. Hub Width in 2.0	Nom. Hub	Av. U.S.	Square in 1.5 2.5	ore Sizes Metric	Square mm 40 60			
21 (1.12%)	6.7	170	6.8	172	2.0	51	1 to 2 in 1/16 increments ³	1.5 2.5	25 to 50 in 5 increments	40 60			

					Polypi	ropyle	ne Con	nposite	Split	Sproc	kets ⁴
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable B	ore Size	S	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	
Action)	in	mm	in	mm	in	mm	in ⁵	in	mm ⁵	mm	
18	5.7	145	5.8	148	2.0	51		1.5		40	
(1.52%)								2.5		60	
21	6.7	170	6.8	172	2.0	51		1.5		40	
(1.12%)								2.5		60	
31	9.9	251	10.1	257	2.0	51		3.5			
(0.51%)											

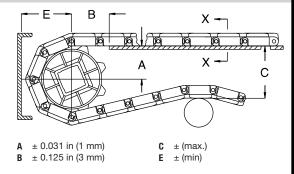
					Polyu	rethan	e Com	posite	Split 9	Sprock	ets ⁶
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A	vailable B	ore Size	S	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	
Action)	in	mm	in	mm	in	mm	in	in	mm	mm	
31	9.9	251	10.1	257	1.50	38		3.5			
(0.51%)					1.67	44		2.5 ⁷	1		
(====,=)											

¹ Contact Intralox Customer Service for lead times.

In the standard section of the

⁴ Contact Intralox Customer Service for lead times.

⁵ U.S. key sizes on round bore sprockets conform to ANSI standard B17.1-1967 (R1989) and metric key sizes conform to DIN standard 6885.
6 Contact Intralox Customer Service for lead times.

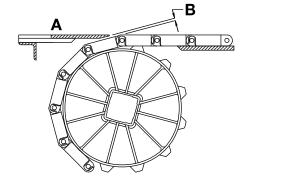

 $^{^{\}rm 7}$ The 2.5 in square bore is created by using a bore adapter in the 3.5 in square bore sprocket.

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see *Basic Conveyor Frame Requirements*.


Sn	rocket De	scription	Α			3		2		E
	Diameter		Range (Botto	m to Ton)			`			_
in	mm	No. Teeth	in	mm	in	mm	in	mm	in	mm
	111111			ies 4009 Flush 0	- Frid					
3.9	99	12	2.07-2.14	53-54	2.31	59	4.62	117	2.73	69
5.1	130	16	2.73-2.78	69-71	2.51	64	5.90	150	3.37	86
5.7	145	18	3.05-3.10	77-79	2.54	65	6.54	166	3.69	94
6.7	170	21	3.54-3.58	90-91	2.70	69	7.50	191	4.17	106
9.9	251	31	5.15-5.18	131-132	3.15	80	10.70	272	5.77	147
				ries 4009 Flat T					7111	
3.9	99	12	2.07-2.14	53-54	2.31	59	4.66	118	2.77	70
5.1	130	16	2.73-2.78	69-71	2.51	64	5.94	151	3.41	87
5.7	145	18	3.05-3.10	77-79	2.54	65	6.58	167	3.73	95
6.7	170	21	3.54-3.58	90-91	2.70	69	7.54	192	4.21	107
9.9	251	31	5.15-5.18	131-132	3.15	80	10.74	273	5.81	148
			Se	ries 4014 Flat T	ор				•	
3.9	99	12	2.07-2.14	53-54	2.31	59	4.24	108	2.68	68
5.1	130	16	2.73-2.78	69-71	2.51	64	5.49	139	3.64	92
5.7	145	18	3.05-3.10	77-79	2.54	65	6.09	155	3.95	100
6.7	170	21	3.54-3.58	90-91	2.70	69	7.09	180	4.43	113
9.9	251	31	5.15-5.18	131-132	3.15	80	10.86	276	5.93	151
			030 and Series 4031	7.5-in ProTrax S		Flat Top v	with Tabs			
3.9	99	12	2.07-2.17	53-54	2.31	59	4.66	118	2.77	70
5.1	130	16	2.73-2.78	67-71	2.51	64	5.989	152	3.459	88
5.8	147	18	3.05-3.10	77-79	2.54	65	6.629	168	3.779	96
6.7	170	21	3.54-3.58	90-91	2.7	69	7.589	193	4.259	108
9.9	251	31	5.15-5.18	131-132	3.15	80	10.789	274	5.859	149
	1		Series 4032 7.5-in Pro							
5.1	130	16	2.73-2.78	67-71	2.51	64	5.99	152	3.46	88
5.8	147	18	3.05-3.10	77-79	2.54	65	6.63	168	3.78	96
6.7	170	21	3.54-3.58	90-91	2.7	69	7.59	193	4.26	108
9.9	251	31	5.15-5.18	131-132	3.15	80	10.79	274	5.86	149
			Series 4033 7.5-				4.00	440		
3.9	99	12	2.07-2.17	53-54	2.31	59	4.66	118	2.77	70
5.1	130	16	2.73-2.78	67-71	2.51	64	5.989	152	3.459	88
5.8	147	18	3.05-3.10	77-79	2.54	65	6.629	168	3.779	96
6.7	170	21	3.54-3.58	90-91	2.7	69	7.589	193	4.259	108
9.9	251	31	5.15-5.18	131-132	3.15	80 Ton	10.789	274	5.859	149
2.0	99	12		091, 4092 Sidefle 53-54			4.60	117	2.72	60
3.9 5.1	130	16	2.07-2.14 2.73-2.78	69-71	2.31	59 64	4.62 5.90	117 150	2.73 3.37	69 86
5.7	145	18	3.05-3.10	77-79	2.51	65	6.54	166	3.69	94
6.7	170	21	3.54-3.58	90-91	2.70	69	7.50	191	4.17	106
9.9	251	31	5.15-5.18	131-132	3.15	80	10.70	272	5.77	147
5.5	201	J 31		deflexing Squar	1	l	10.70	212	3.11	147
5.2	132	16	2.73-2.78	69-71	2.51	64	6.14	156	2.84	72
5.8	147	18	3.05-3.10	77-79	2.54	65	6.78	172	3.16	80
6.8	173	21	3.54-3.58	90-91	2.70	69	7.74	197	3.64	92
10.0	254	31	5.15	131	3.15	80	10.94	278	5.24	133
10.0	204		0.10	101	0.10	1 00	10.34	210	0.24	100

Dead Plate Gap

A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.

A Top surface of dead plate

B Dead plate gap

Sprocket Description	Gap				
neter	No Tooth	in	mm		
mm	No. reeur		mm		
99	12	0.066	1.7		
130	16	0.050	1.3		
145	18	0.044	1.1		
170	21	0.038	1.0		
251	31	0.025	0.6		
	99 130 145 170	mm No. I eeth 99 12 130 16 145 18 170 21	mm No. I eeth in 99 12 0.066 130 16 0.050 145 18 0.044 170 21 0.038		

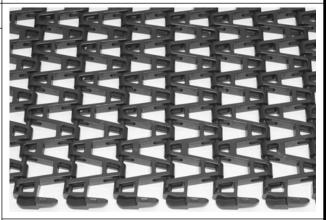
SPIRAL BELTS

Engineering Program Analysis for Spiral and Radius

Use the Intralox Engineering Program to calculate the estimated belt pull for radius applications and ensure that the belt is strong enough for the application. Contact Intralox Customer Service for more information.

Information Required for an Analysis

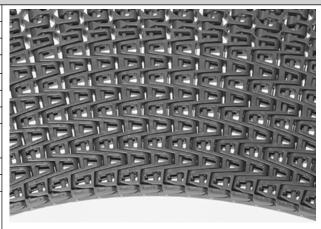
- Any environmental conditions which can affect the friction coefficient. For dirty or abrasive conditions, use higher-than-normal friction coefficients.
- Belt width
- Length of each straight run
- Turning angle of each turn
- Turn direction of each turn
- Inside turn radius of each turn
- Carryway and hold down rail material
- Product load lb/ft² (kg/m²)
- Product accumulation conditions
- Belt speed
- Elevation changes in each section
- Operating temperatures


Note: For assistance with radius belt and low-tension capstan drive spiral selections, contact Intralox Customer Service Technical Support Group.

		Spiral
	in	mm
Pitch	2.00	50.8
Minimum Width ¹	26	660
Maximum Width ¹	50	1270
Width Increments	1.0	25.4
Opening Size (approx.)	0.85 x 0.88	21.6 x 22.5
Open Area (fully extended)	56	%
Minimum Open Area (1.0TR)	22	%
Hinge Style	Ор	en
Drive Method	Hinge-	driven
Rod Retention; Rod Type	Occluded edg	ge; unheaded

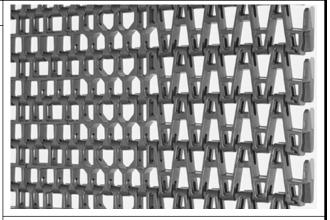
- This belt has pinch points. See the Safety section in the Intralox Conveyor Belting, Installation, Maintenance & Troubleshooting Manual for more information.
- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- · Lightweight, relatively strong belt with smooth surface grid.
- Designed for low-tension, capstan drive spiral applications with a minimum turn radius of 1.0 times the belt width (measured from inside edge).
- Use the Intralox Engineering Program to predict strength requirements for radius applications, and ensure that the belt is strong enough for the application.
- Contact Intralox Customer Service for preferred run direction on spiral applications.
- Minimum sprocket indent from the inside (collapsed) edge of the spiral: 12 in (304.8 mm).

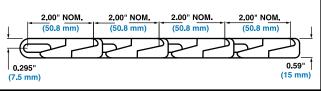
	Belt Data													
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Straight belt strength		Spiral belt strength ²		Temperat (contir	Belt weight							
	0.24 1 (6.1 11 11)	lb/ft	kg/m	lb	kg	°F	°C	lb/ft²	kg/m²					
Acetal	Acetal	1300	1935	300	136	-50 to 200	-46 to 93	1.46	7.13					
SELM	Acetal	1300	1935	300	136	-50 to 200	-46 to 93	1.24	6.05					


1.0

¹ Contact Intralox Customer Service for more information regarding belt widths under 26 in (660 mm) and over 50 in (1270 mm).

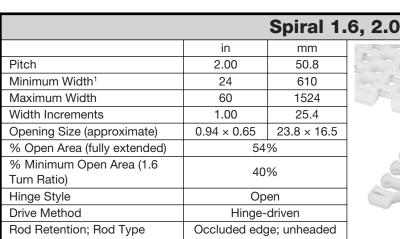
² Published spiral belt strengths and their method of calculation vary among belt manufacturers. Please consult an Intralox Spiral Engineer for accurate comparison of spiral belt strengths.




		Spiral			
	in	mm			
Pitch	2.00	50.8			
Minimum Width ¹	26	660			
Maximum Width ¹	44	1118			
Width Increments	1.00	25.4			
Opening Size (approximate)	0.85×0.88	21.6 × 22.5			
% Open Area (fully extended)	56%				
% Minimum Open Area (1.1 Turn Ratio)	22	%			
Hinge Style	Ор	en			
Drive Method	Hinge-	driven			
Rod Retention; Rod Type	Occluded edge; unheaded				

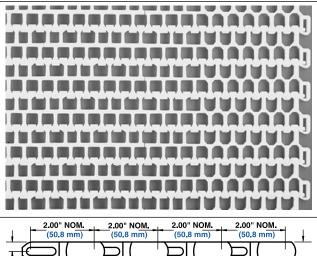
Product Notes

- This belt has pinch points. See the Safety section in the Intralox Conveyor Belting, Installation, Maintenance & Troubleshooting Manual for more information.
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Lightweight, relatively strong belt with smooth surface grid.
- · Belt openings pass straight through the belt to simplify
- Designed for low-tension, capstan drive spiral applications with a minimum turn radius of 1.1 times the belt width (measured from inside edge).
- Contact Intralox Customer Service for preferred run direction on spiral applications.
- Minimum sprocket indent from the inside (collapsed) edge of the spiral: 9.0 in (228.6 mm).



	Belt Data										
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Straight belt strength		Spiral belt strength ²		Temperature range (continuous)		Belt weight			
	0.24 1 (6.1 11 11)	lb/ft	kg/m	lb	kg	°F	°C	lb/ft²	kg/m²		
Acetal	Acetal	1300	1935	300	136	-50 to 200	-46 to 93	1.44	7.03		
SELM	Acetal	1300	1935	300	136	-50 to 200	-46 to 93	1.24	6.05		

1.1

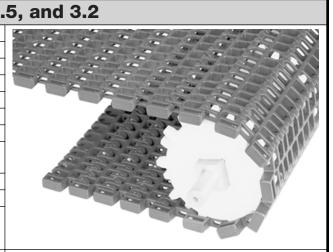

¹ Contact Intralox Customer Service for more information regarding belt widths under 26 in (660 mm) and over 44 in (1118 mm).

² Published spiral belt strengths and their method of calculation vary among belt manufacturers. Please consult an Intralox Spiral Engineer for accurate comparison of spiral belt strengths.

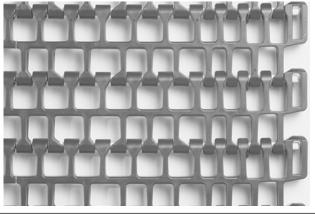
- This belt has pinch points. See the Safety section in the Intralox Conveyor Belting, Installation, Maintenance & Troubleshooting Manual for more information.
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a helt
- Lightweight, relatively strong belt with smooth surface grid.
- Belt openings pass straight through the belt to simplify cleaning.
- Designed for low-tension, capstan drive spiral applications with a minimum turn radius of 1.6 times the belt width (measured from inside edge).
- Contact Intralox Customer Service for preferred run direction on spiral applications.

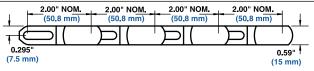
-	0.295" (7.5 mm)			0.59"
Data				

	Belt Data											
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	•	Straight belt strength		Spiral belt strength ²		Temperature range (continuous)		Belt weight			
	0.24 1 (6.1 11 11)	lb/ft	kg/m	lb	kg	°F	°C	lb/ft²	kg/m²			
Acetal	Acetal	1700	2530	375	170	-50 to 200	-46 to 93	1.41	6.88			
Polypropylene ³	Acetal	1500	2232	300	136	34 to 200	1 to 93	1.01	4.93			
SELM	Acetal	1500	2232	300	136	-50 to 200	-46 to 93	1.24	6.05			


¹ Contact Intralox Customer Service for more information regarding belt widths under 24 in (610 mm).

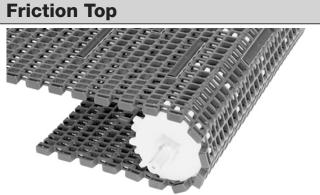
² Published spiral belt strengths and their method of calculation vary among belt manufacturers. Please consult an Intralox Spiral Engineer for accurate comparison of spiral belt strengths.


³ Available in 1.6 radius only.

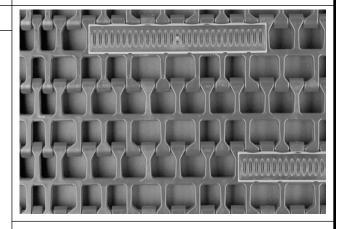


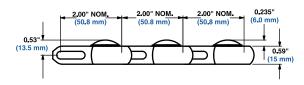
	Spir	al 2.2, 2			
	in	mm			
Pitch	2.00	50.8			
Minimum Width ¹	24	610			
Maximum Width	60	1524			
Width Increments	1.00	25.4			
Opening Size (approximate)	0.94 × 0.65	23.8 × 16.5			
% Open Area (fully extended)	57%				
% Minimum Open Area (2.2 Turn Ratio)	32	%			
Hinge Style	Ор	en			
Drive Method	Hinge-	driven			
Rod Retention; Rod Type	Occluded edg	ge; unheaded			

- This belt has pinch points. See the *Safety* section in the *Intralox Conveyor Belting, Installation, Maintenance & Troubleshooting Manual* for more information.
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a helt
- Lightweight, relatively strong belt with smooth surface grid.
- Belt openings pass straight through the belt to simplify cleaning.
- Designed for low-tension, capstan drive spiral applications with a minimum turn radius of 2.2 times the belt width (measured from inside edge).
- Contact Intralox Customer Service for preferred run direction on spiral applications.


	Belt Data												
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Straight belt strength		Spiral belt strength ²		Temperature range (continuous)		Belt weight					
	0.24 1 (0.1 11 11)	lb/ft	kg/m	lb	kg	°F	°C	lb/ft²	kg/m²				
Acetal	Acetal	1700	2530	475	215	-50 to 200	-46 to 93	1.54	7.52				
Polypropylene	Acetal	1500	2232	400	181	34 to 200	1 to 93	1.04	5.08				
SELM	Acetal	1500	2232	375	170	-50 to 200	-46 to 93	1.24	6.05				

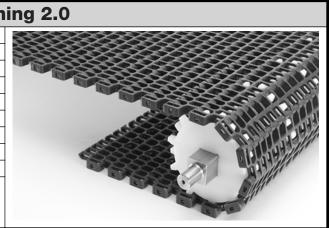
¹ Contact Intralox Customer Service for more information regarding belt widths under 24 in (610 mm).


² Published spiral belt strengths and their method of calculation vary among belt manufacturers. Please consult an Intralox Spiral Engineer for accurate comparison of spiral belt strengths.

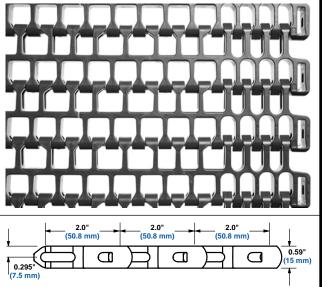


	Spiral	Rounded		
	in	mm		
Pitch	2.00	50.8		
Minimum Width ¹	24	610		
Maximum Width	60	1524		
Width Increments	1.00	25.4		
Opening Size (approximate)	0.94 × 0.65	23.8 × 16.5		
Hinge Style	Op	en		
Drive Method	Hinge-	driven		
Rod Retention; Rod Type	Occluded edge; unheaded			

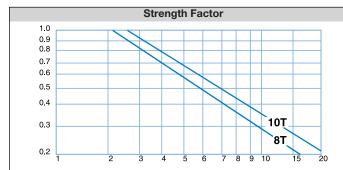
- This belt has pinch points. See the Safety section in the Intralox Conveyor Belting, Installation, Maintenance & Troubleshooting Manual for more information.
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a helt
- Lightweight, relatively strong belt with smooth surface arid.
- Belt openings pass straight through the belt to simplify cleaning.
- Friction Top is available in white polypropylene with white rubber, blue polypropylene with black rubber, and natural polyethylene with white rubber.
- Contact Intralox Customer Service for preferred run direction on spiral applications.
- Contact Intralox Customer Service for minimum indent requirements.



					Belt	Data								
Base belt material	Base/ friction color Standard rod material Ø 0.24 in (6.1		Belt st	trength	Spiral Belt strength 1.6 TR (2.2, 2.5, 3.2 TR)		Temperature range (continuous)		Belt weight		Friction Top Hardness		Agency acceptability	
	color	mm)	lb/ft	kg/m	lb	kg	°F	°C	lb/ft²	kg/m²	Tiaruness	FDA (USA)	EU MC ^b	
Acetal	Blue/Black	Acetal	1700	2530	375	170	34 to	1 to	1.44	7.03	55 Shore A	•	С	
					(475)	(215)	150	66	(1.54)	(7.52)				
Acetal	White/	Acetal	1700	2530	376	171	35 to	2 to	1.44	7.03	55 Shore A	а	С	
	White				(475)	(215)	150	66	(1.54)	(7.52)				
Polypropylene	Blue/Black	Acetal	1500	2232	300	136	34 to	1 to	1.01	4.93	55 Shore A	а		
					(400)	(181)	150	66	(1.04)	(5.08)				
Polypropylene	White/	Acetal	1500	2232	300	136	34 to	1 to	1.01	4.93	55 Shore A	а	С	
	White				(400)	(181)	150	66	(1.04)	(5.08)				

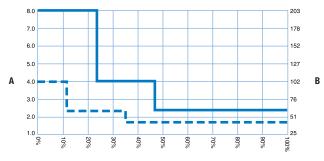

- - Fully compliant
- a FDA Compliant with Restriction: Do not use in direct contact with fatty foods.
- b European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.
- c EU compliant with Restriction: Do not use in direct contact with fatty foods.

		Dual Turn		
	in	mm		
Pitch	2.00	50.8		
Minimum Width	18	457.2		
Maximum Width	60	1524		
Width Increments	1.0	25.4		
Opening Size (approx.)	0.94 x 0.65	23.8 x 16.5		
Open Area (fully extended)	57	%		
Hinge Style	Op	en		
Drive Method	Hinge-	driven		
Rod Retention; Rod Type	Occluded ed	ge; unheaded		


- This belt has pinch points. See the Safety section in the Intralox Conveyor Belting, Installation, Maintenance & Troubleshooting Manual for more information.
- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- · Do not use in spiral conveyor systems.
- Designed for standard drive and i-Drive systems.
- Rod insertion is accomplished from the edge of the belt. No special tools are required.
- Turn ratio of 2.0 times belt width (radius measured at inside edge).
- · Preferred run direction is to align with slotted holes leading.
- Consult the Intralox Engineering Program and i-Drive Program for specific widths not listed here.

	Belt Data												
Base belt material	Standard rod material Ø 0.24 in (6.1 mm)	Straight belt strength		Curved belt strength	Temperat (contir	Belt weight							
	0.24 1 (0.1 11 11)	lb/ft	kg/m		°F	°C	lb/ft²	kg/m²					
Acetal	Acetal	1700	2530	For curved belt strength	-50 to 200	-46 to 93	1.54	7.52					
Polypropylene	Acetal	1500	2232	calculations, contact Intralox	34 to 200	1 to 93	1.04	5.08					
SELM	Acetal	990	1473	Customer Service.	-50 to 200	-46 to 93	1.24	6.05					

		Sprocket ar	nd Support Quantity Referen	ice¹
Belt Wi	dth Range ²	Minimum Number of	W	earstrips
in	mm	Sprockets Per Shaft ³	Carryway	Returnway
24	610	3	3	3
26	660	3	3	3
28	711	5	3	3
30	762	5	3	3
32	813	5	3	3
34	864	5	3	3
36	914	5	3	3
38	965	5	4	4
40	1016	5	4	4
42	1067	5	4	4
44	1118	7	4	4
46	1168	7	4	4
48	1219	7	4	4
50	1270	7	4	4
52	1321	7	4	4
54	1372	7	5	5
56	1422	7	5	5
58	1473	7	5	5
60	1524	9	5	5
For other v	vidths, use an o	odd number of sprockets at	Contact Intralox Technical Support	Maximum 12 in (305 mm) centerline
Maxir	num 6 in (152 r	nm) centerline spacing	for more information.	spacing


Speed/length ratio (V/L)

Divide belt speed (V) by the shaft centerline distance (L). Strength Factor is found at intersection of the speed/length ratio and the appropriate sprocket line. See *Belt Selection Instructions* for more information.

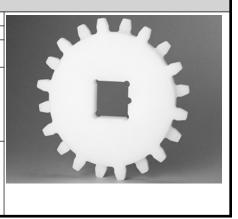
V = ft/min (m/min); T = number of teeth; L = ft (m)

Sprocket Spacing as a Function of Belt Strength Utilized

SERIES 2600

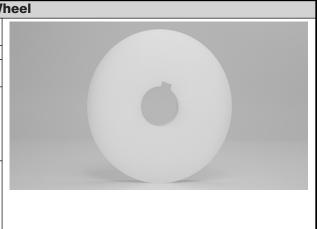
Percentage of allowable belt strength utilized

A Sprocket spacing, in Sprocket spacing, mm


Solid line: Square bore sprockets Dashed line: Round bore sprockets

¹ For low-tension capstan drive spirals contact Technical Support Group for suggested carryway support recommendations. Support belt edges using support rollers on drive shafts. Contact Intralox Technical Support for more information.

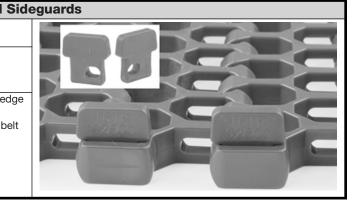
² If belt width exceeds a number listed in the table, see the sprocket and support material minimums for the next larger width range. Belts are available in 1.00 in (25.4 mm) increments beginning with minimum width of 24 in (610 mm). If the actual width is critical, contact Intralox Customer Service.


³ This number is a minimum. Heavy-load applications can require additional sprockets. For lockdown location, see Retainer Rings/Center Sprocket Offset.

					ı	JHMW	Polye	thylene	e Spro	cket ¹				
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A۱	/ailable B	ore Size	S				
Teeth	Pitch	Pitch	Outer	Outer	Outer Hub Hub U.S. Metric			tric						
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square				
Action)	in	mm	in	mm	in	mm	in	in	mm	mm				
8	5.2	132	5.4	136	0.8	20.32	1-1/4	1-1/2		40				
(7.61%)							1-7/16	2-1/2		60				
							1-1/2							
							2							
10	6.5	165	6.7	170	0.8	20.32	1-1/4	1-1/2		40				
(4.89%)							1-7/16	2-1/2		60				
							1-1/2							
							2							

	EZ Clean [™] Sprocket ²										
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	A۱	/ailable B	ore Size	S	
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.	S.	Me	tric	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round	Square	Round	Square	
Action)	in	mm	in	mm	in	mm	in	in	mm	mm	
10	6.5	165	6.7	170	0.8	20.32		2.5			
(4.89%)											
											(2-17)

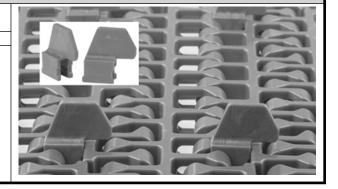
				S	upport W				
Availab	le Pitch		Available	Bore Sizes					
Diar	neter								
		U	.S.	Me	tric				
in	mm	Round	Square	Round	Square				
		in	in	mm	mm				
5.2	132	1.25	1.5		40				
		1-7/16	2.5		60				
		1.5							
		2							
6.5	165	1.25	1.5		40				
		1-7/16	2.5		60				
		1.5							
		2							



Ontact Customer Service for lead times, preferred method of locking down sprockets, and for proper sprocket timing.
Contact Intralox Customer Service for lead times.

Universal		
Available Materials	e Height	Availabl
Available iviaterials	mm	in
	12.7	0.50
Acetal, SELM	25.4	1.00
	50.8 ¹	2.00 ²

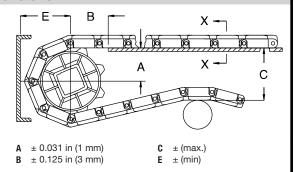
- Maximizes product carrying capacity. Sideguards fit to the very edge of the belt, with no indent.
- Assembly does not require "finger cuts" on the modules, so the belt beam strength is uncompromised.
- Compatible turn ratios: 1.6, 2.2, 2.5, and 3.2.


Overlapping		
Available Materials	e Height	Availabl
Available Materials	mm	in
Acetal, SELM	12.7	0.50
Acetal, SELIVI	25.4	1.00

- Maximizes product carrying capacity. Sideguards fit to the very edge of the belt, with no indent.
- Assembly does not require "finger cuts" on the modules, so the belt beam strength is not compromised.
- Makes the outer edge of the belt more snag-resistant.
- Keeps small products from falling through belt gaps.
- Turn ratios for 0.50 in (12.7 mm) acetal overlapping sideguards are 1.6, 2.2, 2.5, and 3.2.
- Turn ratio for 1.00 in (25.4 mm) overlapping sideguards is 1.6 only.

		Lane Divid	ders
Availabl	e Height	Available Materials	400
in	mm	Available Materials	622
0.75 19.0		Acetal, polypropylene	

- Assembly does not require finger cuts on the modules, so the belt beam strength is uncompromised.
- For 1.6 turn radius modules, lane dividers can be placed on indents of 1.5 in(38.1 mm), 2.5 in (63.5 mm), 3.5 in (88.9 mm), 4.5 in (114 mm), 11.5 in (292 mm), and up, in 1.00 in (25.4 mm) increments.
- For 2.2 turn radius modules, lane dividers can be placed on indents of 4.5 in (114 mm) and up in 1.00 in (25.4 mm) increments.

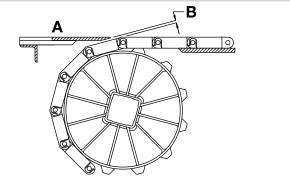


Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in anv design.

SERIES 2600

For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see Basic Conveyor Frame Requirements.


	Sprocket Description			A		В			C		П			
Pit Diam		Nomir	nal OD	No. Teeth	Range (Bottom to Top) in mm		• •		in mm		in	mm	in	mm
in	mm	in	mm	reeur										
	Series 2600 Spiral 1.0, 1.1, 1.6, 2.0, 2.2, 2.5, 3.2													
5.2	132	5.4	137	8	2.12-2.32	54-59	2.25	57	5.23	133	2.97	75		
6.5	165	6.7	170	10	2.78-2.94	71-75	2.54	65	6.47	164	3.59	91		
	•			Sc	eries 2600 Spi	ral Rounded	Friction To	pp		•				
5.2	132	5.4	137	8	2.12-2.32	54-59	2.25	57	5.46	139	3.21	82		
6.5	165	6.7	170	10	2.78-2.94	71-75	2.54	65	6.71	170	3.83	97		

Dead Plate Gap

A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.

A Top surface of dead plate

B Dead plate gap

	Sprocket Description	Ga	p		
Pitch D	iameter	No. Teeth	in	mm	
in	mm	No. Teetii	ın	111111	
5.2	132	8	0.200	5.1	
6.5	165	10	0.158	4.0	

Hold Down Rails and Wearstrips

Intralox recommends using continuous hold down rails through an entire turn. Start the rails before the turn, at a distance of 1X the belt width. End the rails after the turn, at a distance of 1X the belt width. This applies to both carryway and returnway. The use of hold down rails along both side of the belt over the full carryway is recommended but not mandatory. See *Custom* Wearstrips.

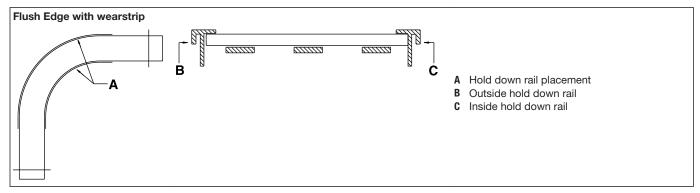
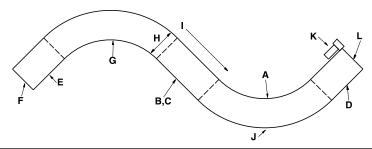


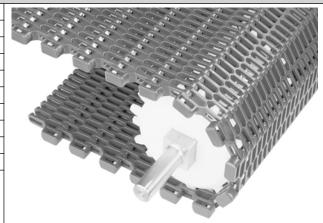
Figure 12: Hold down rails and wearstrips for Series 2600 flat-turns

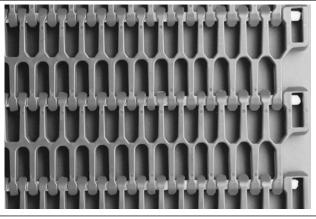

Belt Selection Instructions

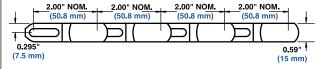
For assistance with radius belt and low-tension capstan drive spiral selections, contact Intralox Customer Service Technical Support Group. Run the Engineering Program to ensure that the belt is strong enough for the radius application in question. See Engineering Program Analysis for Spiral and Radius for more information.

Series 2600 Design Guide Summary

For more information, see the Installation, Maintenance & Troubleshooting Manual available from Intralox.


- A The minimum turn radius for Series 2600 is the turn radius times the belt width, measured from the inside edge.
- The minimum straight run required between turns of opposing direction is 2.0 times the belt width. Shorter straight sections lead to high wear on the edge guide rail and high pull stresses in the
- C There is no minimum straight run required between turns that are in the same direction.
- The minimum final straight run (leading to the drive shaft) must be J a minimum of 5 ft (1.5 m). If 5 ft (1.5 m) is not feasible, shorter distances (down to 1.5 times the belt width) require a weighted take up to avoid sprocket wear and tracking problems. See Special Take-up Arrangements.
- **E** The minimum length of the first straight run (immediately after the idle shaft) is 1.5 times the belt width. When shorter lengths are required (down to 1.0 times the width), an idle roller can be used in place of sprockets.
- idle shaft
- G first turn
- Н belt width
- belt travel
- second turn
 - K drive motor
 - L drive shaft

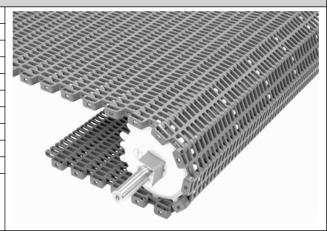

Figure 13: Typical two-turn radius layout



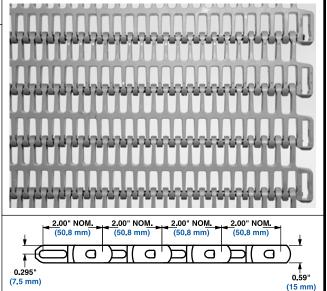
		Spiral		
	in	mm		
Pitch	2.00	50.8		
Minimum Width ¹	24	610		
Maximum Width	60	1524		
Width Increments	0.50	12.7		
Opening Size (approximate)	0.38×0.64	9.52 × 16.5		
Open Area (fully extended)	45%			
Min. Open Area (1.6 TR)	27	%		
Hinge Style	Ор	en		
Drive Method	Hinge-	driven		
Rod Retention; Rod Type	Occluded edg	ge; unheaded		

- This belt has pinch points. See the Safety section in the Intralox Conveyor Belting, Installation, Maintenance & Troubleshooting Manual for more information.
- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Lightweight, relatively strong belt with smooth surface
- Belt openings pass straight through the belt to simplify cleaning.
- Designed for low-tension, capstan drive, spiral applications with a minimum turn radius of 1.6 times the belt width (measured from inside edge).
- Contact Intralox Customer Service for preferred run direction on spiral applications.

Belt Data									
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Straight belt strength		Spiral belt strength ²		Temperat (contir	Belt weight		
	0.24 1 (0.1 11 11)	lb/ft	kg/m	lb	kg	°F	°C	lb/ft²	kg/m²
Acetal	Acetal	2000	2976	375	170	-50 to 200	-46 to 93	1.74	8.50
SELM	Acetal	1060	1577	300	136	-50 to 200	-46 to 93	1.36	6.64

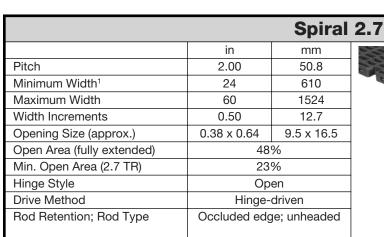

1.6

¹ Contact Intralox Customer Service for more information regarding belt widths under 24 in (610 mm).


² Published spiral belt strengths and their method of calculation vary among belt manufacturers. Please consult an Intralox Spiral Engineer for accurate comparison of spiral belt strengths.

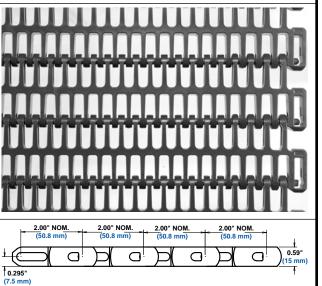
		Spiral		
	in	mm		
Pitch	2.00	50.8		
Minimum Width ¹	24	610		
Maximum Width	60	1524		
Width Increments	0.50	12.7		
Opening Size (approx.)	0.38 x 0.64	9.52 x 16.5		
Open Area (fully extended)	48%			
Min. Open Area (2.2 TR)	23	%		
Hinge Style	Ор	en		
Drive Method	Hinge-	driven		
Rod Retention; Rod Type	Occluded edg	ge; unheaded		

- This belt has pinch points. See the Safety section in the Intralox Conveyor Belting, Installation, Maintenance & Troubleshooting Manual for more information.
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Lightweight, relatively strong belt with smooth surface grid.
- Belt openings pass straight through the belt to simplify cleaning.
- Designed for low-tension, capstan drive, spiral applications with a minimum turn radius of 2.2 times the belt width (measured from inside edge).
- Contact Intralox Customer Service for preferred run direction on spiral applications.


	Belt Data											
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Straight belt strength		Spiral belt strength ²		Temperature range (continuous)		Belt weight				
	0.24 1 (0.1 11 11)	lb/ft	kg/m	lb	kg	°F	°C	lb/ft²	kg/m²			
Acetal	Acetal	1700	2530	375	170	-50 to 200	-46 to 93	1.85	9.03			
Polypropylene	Acetal	1500	2232	300	136	34 to 200	1 to 93	1.26	6.15			
SELM	Acetal	1060	1577	300	136	-50 to 200	-46 to 93	1.44	7.03			

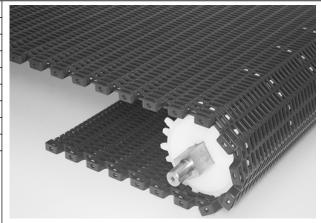
(7.5 mm)

2.2

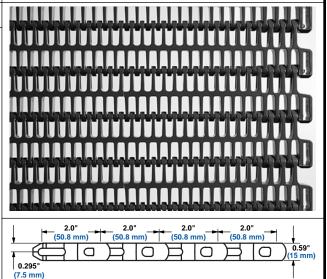

¹ Contact Intralox Customer Service for more information regarding belt widths under 24 in (610 mm).

² Published spiral belt strengths and their method of calculation vary among belt manufacturers. Please consult an Intralox Spiral Engineer for accurate comparison of spiral belt strengths.

- This belt has pinch points. See the Safety section in the Intralox Conveyor Belting, Installation, Maintenance & Troubleshooting Manual for more information.
- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Lightweight, relatively strong belt with smooth surface
- · Belt openings pass straight through the belt to simplify cleaning.
- Designed for low-tension, capstan drive, spiral applications with a minimum turn radius of 2.7 times the belt width (measured from inside edge).
- Contact Intralox Customer Service for preferred run direction on spiral applications.



	Belt Data								
Belt material	Standard rod material Ø 0.24 in (6.1 mm)	Straig stre		Spiral belt	t strength ²	Temperat (contir	ure range nuous)	Belt w	/eight
	0.24 1 (0.1 11 11)	lb/ft	kg/m	lb	kg	°F	°C	lb/ft²	kg/m²
Acetal	Acetal	1700	2530	375	170	-50 to 200	-46 to 93	1.86	9.08
Polypropylene	Acetal	1500	2232	300	136	34 to 200	1 to 93	1.26	6.15
SELM	Acetal	1060	1577	300	136	-50 to 200	-46 to 93	1.44	7.03


¹ Contact Intralox Customer Service for more information regarding belt widths under 24 in (610 mm).

² Published spiral belt strengths and their method of calculation vary among belt manufacturers. Please consult an Intralox Spiral Engineer for accurate comparison of spiral belt strengths.

		Dual Turn	ing 2.0
	in	mm	
Pitch	2.00	50.8	
Minimum Width ¹	12	304.8	
Maximum Width	60	1524	
Width Increments	0.50	12.7	-
Opening Size (approx.)	0.38 x 0.64	9.5 x 16.5	
Open Area (fully extended) ²	44	%	
Min. Open Area (2.0 TR)	23	%	
Hinge Style	Ор	en	
Drive Method	Hinge-	driven	

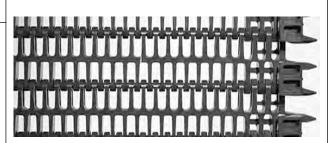
- This belt has pinch points. See the *Safety* section in the *Intralox Conveyor Belting, Installation, Maintenance & Troubleshooting Manual* for more information.
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Do not use in spiral conveyor systems.
- Designed for standard drive and i-Drive systems.
- Rod insertion is accomplished from the edge of the belt.
 No special tools are required.
- Turn ratio of 2.0 times belt width (measured from inside edge).
- Preferred run direction is to align slotted holes leading.
- Consult the Intralox Engineering Program and i-Drive Program for specific widths not listed here.

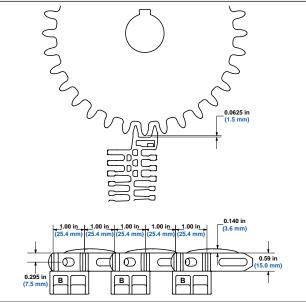
				Belt Data				
Belt material	Standard rod material Ø 0.240 in (6.1 mm)	Straight belt strength		Curved belt strength	Temperat (contin	Belt weight		
	0.240 III (0.1 11111)	lb/ft	kg/m		°F	°C	lb/ft²	kg/m²
Acetal	Acetal	1700	2530	For curved belt strength	-50 to 200	-46 to 93	1.84	8.98
Acetal	Nylon	1700	2530	calculations, contact Intralox	-50 to 200	-46 to 93	1.81	8.84
SELM	Acetal	1060	1577	Customer Service.	-50 to 200	-46 to 93	1.42	6.93
SELM	Nylon	1060	1577	Customer Gervice.	-50 to 212	-46 to 100	1.40	6.84

¹ Contact Intralox Customer Service for more information regarding belt widths under 12 in (305 mm).

 $^{^{2}}$ Open area calculations for S2700 Dual Turning 2.0 are unique to this style, and are not directly comparable to other S2700 styles.

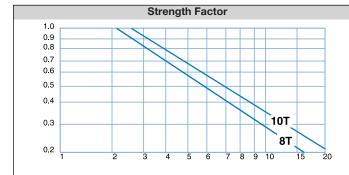
Belt functions mechanically up to 240°F (116°C). Belt used in the temperature window of 212°F to 240°F (100°C to 116°C) is not FDA-compliant.




		Side D
	in	mm
Module Pitch	2.0	50.8
Drive Tooth Pitch	1.0	25.4
Minimum Width	10	254.0
Maximum Width	42	1066.8
Width Increments	0.50	12.7
Opening Size (approx.)	0.38 x 0.64	9.5 x 16.5
Open Area	44	%
Hinge Style	Op	en
Drive Method	Side-o	driven

rive

- This belt has pinch points. See the Safety section in the Intralox Conveyor Belting, Installation, Maintenance & Troubleshooting Manual for more information.
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Do not use in spiral conveyor systems.
- Designed for side-driven applications with a minimum turn radius of 2.0 times the belt width (measured from inside edge to outer edge, not including drive teeth).
- A 1.6TR S2700 Spiralox module can be used on the inner edge to achieve a smaller turn ratio, but only for single-direction curve applications.
- Teeth along the belt edge drive the belt allow for atypical configurations and long conveyors without transfer points.
- The Intralox Side Drive Program can help predict the strength requirements of most side-driven applications, ensuring that the belt is strong enough for the application. Contact Intralox Customer Service for more information.
- Preferred run direction is to align with slotted holes leading. This belt is not designed to run in the opposite direction.
- The Z-dimension is the distance between the edge of the belt (not including drive teeth) and the outer diameter of the sprocket. Maintain this dimension to ensure proper engagement of the belt
- S2700 lane dividers can be used with this belt, but sideguards cannot be used.


Belt Data											
Standard rod Belt material material Ø 0.240		Straight belt strengt Curved belt strengt		lt strength1	Temperature range (continuous)		Belt weight		Agency Acceptability		
	in (6.1 mm)	lb/ft	kg/m	lb	kg	°F	°C	lb/ft²	kg/m²	FDA (USA)	EU MC ²
Acetal	Acetal	175	260	150	220	-50 to 200	-46 to 93	2.17	10.6	•	•

¹ Published curved belt strengths and their method of calculation vary among belt manufacturers. Contact Intralox Customer Service for accurate comparison of curved belt strengths

² EU MC European Migration Certificate providing approval for food contact according to EU Directive 2002/72/EC and all its amendments to date.

	Sprocket and Support Quantity Reference ¹									
Belt Wid	dth Range²	Minimum Number of	We	earstrips ⁴						
in	mm	Sprockets Per Shaft ³	Carryway	Returnway						
24	610	5	2	2						
26	660	5	2	2						
28	711	5	2	2						
30	762	5	3	2						
32	813	5	3	2						
34	864	7	3	2						
36	914	7	3	2						
38	965	7	3	2						
40	1016	7	3	2						
42	1067	7	3	2						
44	1118	7	3	2						
46	1168	9	3	2						
48	1219	9	3	2						
50	1270	9	3	2						
52	1321	9	3	2						
54	1372	9	3	2						
56	1422	9	4	3						
58	1473	11	4	3						
60	1524	11	4	3						
For other v	vidths, use an o	dd number of sprockets at	Maximum 25 in (635 mm) centerline	Maximum 30 in (762 mm) centerline						
Maxin	num 8 in (203 m	m) centerline spacing.	spacing	spacing						

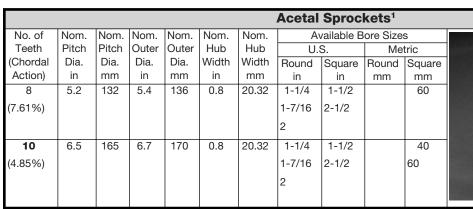
Speed/length ratio (V/L)

Divide belt speed (V) by the shaft centerline distance (L). Strength Factor is found at intersection of the speed/length ratio and the appropriate sprocket line. See Belt Selection Instructions for more information.

V = ft/min (m/min); T = number of teeth; L = ft (m)

Percentage of allowable belt strength utilized

- Sprocket spacing, in
- Sprocket spacing, mm


Solid line: Square bore sprockets Dashed line: Round bore sprockets

¹ For low-tension capstan drive spirals contact Technical Support Group for suggested carryway support recommendations. Support belt edges using support rollers on drive shafts. Contact Intraiox Technical Support for more information.

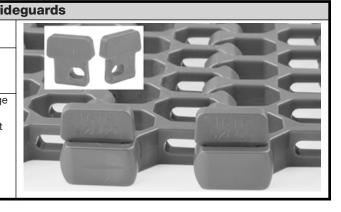
² If belt width exceeds a number listed in the table, see the sprocket and support material minimums for the next larger width range. Belts are available in 0.50 in (12.7 mm) increments beginning with minimum width of 24 in (610 mm). If the actual width is critical, contact Intralox Customer Service.

³ This number is a minimum. Heavy-load applications can require additional sprockets. For lockdown location, see Retainer Rings/Center Sprocket Offset.

⁴ Carryway spacing depends on a distributed 2 lb/ft² at 65°F (18.3°C) for acetal belts with acetal rods with a 2 in (50.8 mm) and 4 in (101.6 mm) overhang.

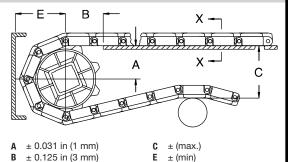
	Support \							
Available Pit	ch Diameter		Available Bore Sizes					
		U.	S.	Me	tric			
in	mm	Round	Square	Round	Square			
		in	in	mm	mm			
5.2	132	1.25	1.5		40			
		1-7/16	2.5		60			
		1.5						
		2						
6.5	165	1.25	1.5		40			
		1-7/16	2.5		60			
		1.5						
		2						

		Overlapping Signature	deguards
Availabl	e Height	Available Materials	Sales Comment
in	mm	Available iviaterials	-
0.50	12.7	Acetal. SELM	STATE OF THE PERSON
1.00	25.4	Acetal, SELIVI	STATE OF THE PERSON NAMED IN
			436


- Maximizes product carrying capacity. Sideguards fit to the very edge of the belt, with no indent.
- Assembly does not require "finger cuts" on the modules, so the belt beam strength is not compromised.
- Makes the outer edge of the belt more snag-resistant.
- Keeps small products from falling through belt gaps.
- Turn ratio for 0.50 in (12.7 mm) acetal overlapping sideguards in acetal is 1.6.
- The turn ratio for 1.00 in (25.4 mm) overlapping sideguard is 1.6 only.

		Universal Si				
Availabl	le Height	Available Materials				
in	mm	Available Materials				
0.50	12.7					
1.00	25.4	Acetal, SELM				
2.001	50.8 ¹					
- Marriani		and a site. Old an end of the the second side				

- Maximizes product carrying capacity. Sideguards fit to the very edge of the belt, with no indent.
- Assembly does not require "finger cuts" on the modules, so the belt beam strength is not compromised.


		Lane D	ividers
Availabl	e Height	Available Materials	
in	mm	Acetal, SELM	
0.75	19		

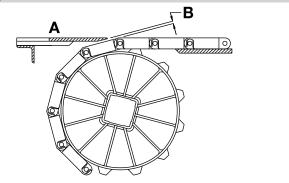
Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see Basic Conveyor Frame Requirements.

Sprocket Description					-	В		С		E		
Pitch D	iameter	Nomir	nal OD	No. Teeth	Range (Bot	tom to Top)	to Top)		in	mm	in	mm
in	mm	in	mm	No. reeur	in	mm		mm	""			
				Se	ries 2700 Spira	1.6, 2.2, 2.7						
5.2	132	5.4	137	8	2.12-2.32	54-59	2.25	57	5.23	133	2.97	75
6.5	165	6.7	170	10	2.78-2.94	71-75	2.54	65	6.47	164	3.59	91



Dead Plate Gap

A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.

- A Top surface of dead plate
- B Dead plate gap

	Sprocket Description	Gap			
Pitch D	iameter	No. Teeth	in	mm	
in	mm	No. reeur	ın	111111	
5.2	132	132 8		5.1	
6.5	165	10	0.158	4.0	

Hold Down Rails and Wearstrips

Intralox recommends using continuous hold down rails through an entire turn. Start the rails before the turn, at a distance of 1X the belt width. End the rails after the turn, at a distance of 1X the belt width. This applies to both carryway and returnway. The use of hold down rails along both side of the belt over the full carryway is recommended but not mandatory. See Custom Wearstrips.

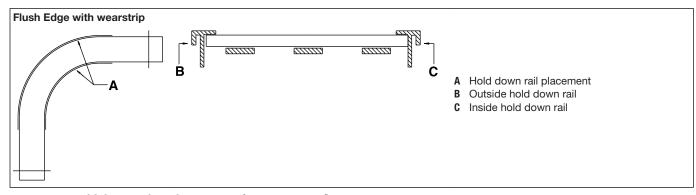


Figure 14: Hold down rails and wearstrips for Series 2700 flat-turns

Belt Selection Instructions

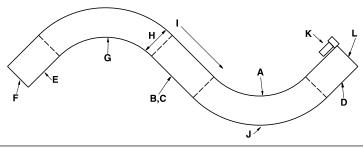
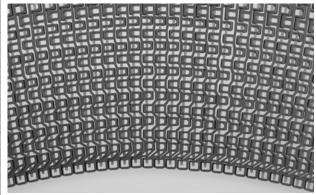
For assistance with radius belt and low-tension capstan drive spiral selections, contact Intralox Customer Service Technical Support Group. Run the Engineering Program to ensure that the belt is strong enough for the radius application in question. See Engineering Program Analysis for Spiral and Radius for more information.

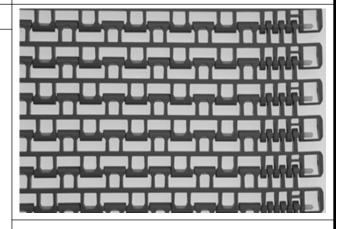
Series 2700 Design Guide Summary

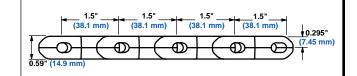
For more information, see the Installation, Maintenance & Troubleshooting Manual available from Intralox.

- times the belt width, measured from the inside edge. For the tight turning style, the minimum turn radius is 1.7 times the belt width.
- B The minimum straight run required between turns of opposing to high wear on the edge guide rail and high pull stresses in the
- C There is no minimum straight run required between turns that are in the same direction.
- D The minimum final straight run (leading to the drive shaft) must be K drive motor a minimum of 5 ft (1.5 m). If 5 ft (1.5 m) is not feasible, shorter distances (down to 1.5 times the belt width) require a weighted take up to avoid sprocket wear and tracking problems. See Special Take-up Arrangements.
- A The minimum turn radius for the standard edge Series 2700 is 2.2 E The minimum length of the first straight run (immediately after the idle shaft) is 1.5 times the belt width. When shorter lengths are required (down to 1.0 times the width), an idle roller can be used in place of sprockets.
 - idle shaft
 - G first turn
 - belt width
 - 1 belt travel
 - J second turn

 - L drive shaft

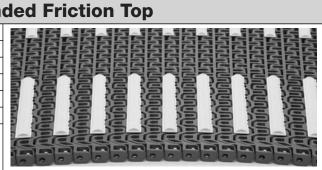



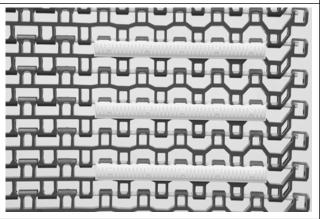

Figure 15: Typical two-turn radius layout

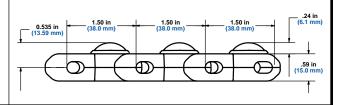


	5	Spiral GT	ech 1.6
	in	mm	
Pitch	1.5	38.1	
Minimum Width	24	609.6	
Width Increments	1.00	25.4	
Opening Sizes (approx.)	1.1 x 0.42	27.9 x 10.7	
Open Area (Fully Extended)	50	1%	北陆西京
Minimum Open Area	36	5%	
Hinge Style	Op	en	
Drive Method	Hinge-	-driven	PART OF
Rod Retention; Rod Type	Occluded ed	ge; unheaded	边滩

- This belt has pinch points. See the Safety section in the Intralox Conveyor Belting, Installation, Maintenance & Troubleshooting Manual for more information.
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Lightweight, relatively strong belt with smooth surface grid.
- · Belt openings pass straight through the belt to simplify cleaning.
- · Robust edge feature adds strength to the outside edge of the belt.
- Relatively uniform open area across the width of the belt aids product freezing and cooling.
- Designed for low-tension, capstan drive, spiral applications with a minimum turn radius of 1.6 times the belt width (measured from inside edge).
- · Minimum sprocket indent from the inside belt edge and from the outside belt edge can vary. Contact Intralox Customer Service to determine exact placement.



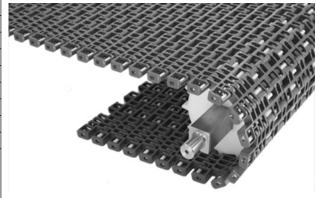

Belt Data									
Belt material Standard rod material Ø 0.240 in (6.1 mm)	Straig stre		Spiral belt strength ¹		Temperature range (continuous)		Belt weight		
	0.240 iii (6.1 11iiii)	lb/ft	kg/m	lb	kg	°F	°C	lb/ft²	kg/m²
Acetal	Acetal	1600	2381	475	215	-50 to 200	-46 to 93	1.60	7.81
SELM	Acetal	500	744	375	170	-50 to 200	-46 to 93	1.28	6.25


¹ Published spiral belt strengths and their method of calculation vary among belt manufacturers. Please contact Intralox Customer Service for accurate comparison of spiral belt strengths.

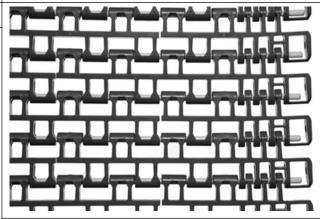
S	piral GTe	ch Roun
	in	mm
Pitch	1.5	38.1
Minimum Width	24	609.6
Width Increments	1.00	25.4
Opening Sizes (approx.)	1.1 x 0.42	27.9 x 10.7
Hinge Style	Ор	en
Drive Method	Hinge-	driven

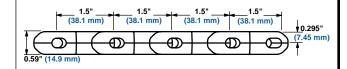
- This belt has pinch points. See the Safety section in the Intralox Conveyor Belting, Installation, Maintenance & Troubleshooting Manual for more information.
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt.
- Lightweight, relatively strong belt with smooth surface grid.
- Belt openings pass straight through the belt to simplify cleaning.
- Available in white polypropylene with white rubber or blue polypropylene with high-performance blue rubber.
- Robust edge feature adds strength to the outside edge of the belt.
- Minimum sprocket indent from the inside belt edge and from the outside belt edge can vary. Contact Intralox Customer Service to determine exact placement.
- Must have a 2.0 in (50.8 mm) minimum gap between friction inserts for correct sprocket placement.

	Belt Data												
Base belt material	Base/Friction			trength	Spira strer	ll belt ngth ¹	Tempe rang (contin	ge	Belt v	weight	Friction Top	Agei Accepta	-
material	Color	or 0.24 in (6.1 mm)	lb/ft	kg/m	lb	kg	°F	°C	lb/ft²	kg/m²	Hardness	FDA (USA)	EU MC ³
Acetal	White/White	Acetal	1700	2530	376 (475)	171 (215)	34 to 150	1 to 66	1.44 (1.54)	7.03 (7.52)	55 Shore A	•	•
Acetal	High- Performance FT Blue/Blue	Acetal	1700	2530	376 (475)	171 (215)	34 to 212	1 to 100	1.44 (1.54)	7.03 (7.52)	59 Shore A	•	•


¹ Published spiral belt strengths and their method of calculation vary among belt manufacturers. Contact an Intralox Spiral Engineer for accurate comparison of spiral belt strengths.

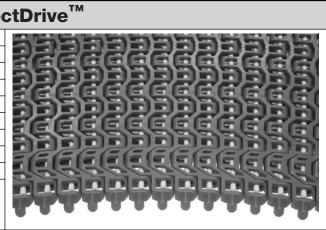
² Before Intralox developed Series S2800, USDA-FSIS Meat and Poultry discontinued publishing a list of acceptable new products designed for food contact. As of the printing of this manual, third-party approvals are being investigated, but are not yet sanctioned by the USDA-FSIS.

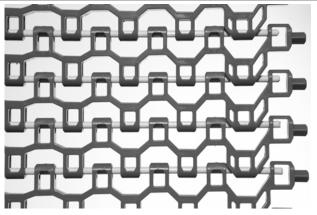

³ European Migration Certificate providing approval for food contact according to EU Regulation 10/2011.

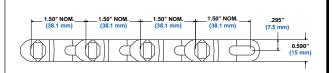


	Spira	I GTech	2.2 and 3.2
	in	mm	ZZZZZZZ
Pitch	1.5	38.1	
Minimum Width	24	609.6	
Width Increments	1.00	25.4	
Opening Sizes (approx.)	1.1 x 0.42	27.9 x 10.7	
Open Area (Fully Extended)	50	%	19
Minimum Open Area	36	%	
Hinge Style	Op	en	
Drive Method	Hinge-	driven	
Rod Retention; Rod Type	Occluded edg	ge; unheaded	

- This belt has pinch points. See the Safety section in the Intralox Conveyor Belting, Installation, Maintenance & Troubleshooting Manual for more information.
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Lightweight belt with extreme beam strength prevents bowing and buckling.
- Relatively uniform open area across the width of the belt aids product freezing and cooling.
- · Robust edge feature adds strength to the outside edge of the belt.
- Open hinge and slot design simplifies cleaning.
- Designed for low-tension, capstan drive, spiral applications with a minimum turn radius of 2.2 times the belt width (measured from the inside edge).
- Minimum sprocket indent from the inside belt edge and from the outside belt edge can vary. Contact Intralox Customer Service to determine exact placement.



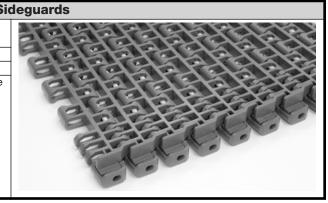

	Belt Data								
Belt material	Standard rod material Ø 0.240 in (6.1 mm)	Straight belt strength		Spiral belt strength ¹		Temperat (contin	Belt w	/eight	
		lb/ft	kg/m	lb	kg	°F	°C	lb/ft²	kg/m²
Acetal	Acetal	1600	2381	475	215	-50 to 200	-46 to 93	1.60	7.81
SELM	Acetal	500	744	375	170	-50 to 200	-46 to 93	1.27	6.3



Sp	iral Dire			
in	mm			
1.5	38.1			
24	609.6			
1.00	25.4			
1.1 x 0.42	27.9 x 10.7			
50	50%			
36	%			
Op	en			
Hinge-	Hinge-driven			
Occluded edg	ge; unheaded			
	in 1.5 24 1.00 1.1 x 0.42 50 36 Op Hinge-			

- This belt has pinch points. See the Safety section in the Intralox Conveyor Belting, Installation, Maintenance & Troubleshooting Manual for more information.
- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Lightweight, relatively strong belt with smooth surface
- · Belt openings pass straight through the belt to simplify cleaning.
- Robust edge feature adds strength to the outside edge of the belt.
- Relatively uniform open area across the width of the belt to aid product freezing and cooling.
- Minimum sprocket indent from the inside belt edge and from the outside belt edge can vary. Contact Intralox Customer Service to determine exact placement.

Belt Data									
Belt material	Standard rod material Ø 0.240 in (6.1 mm)	Straig stre		Spiral belt strength ¹		Temperature range (continuous)		Belt weight	
	0.240 III (0.1 11111)	lb/ft	kg/m	lb	kg	°F	°C	lb/ft²	kg/m²
Acetal	Acetal	1600	2381	475	215	-50 to 200	-46 to 93	1.60	7.81
SELM	Acetal	500	744	375	170	-50 to 200	-46 to 93	1.27	6.2



	Acetal Sprockets ¹										
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Av	ailable B	ore Sizes		
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.		Metri	С	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round in	Square	Round	Square	
Action)	in	mm	in	mm	in	mm		in	mm	mm	
13	6.2	157.5	6.4	162.6	1.2	30.5	1-7/16	1.5		40	
(1.92%)							1-1/2	2.5		60	
(0				
							2				
											9 .
											And the second

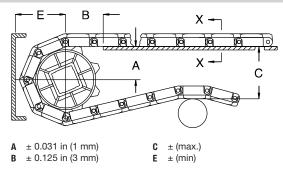
				S	upport W
	le Pitch neter		Available Bore Sizes		
		U	.S.	S. Me	
in	mm	Round	Square	Round	Square
		in	in	mm	mm
6.3	160	1-7/16	1.5		40
		2	2.5		60

Overlapping S					
Available Materials	Available Height				
Available Waterials	mm	in			
Acetal	12.7	0.50			
Acetal	25.4	1.0			
6. 1					

- Maximizes product carrying capacity. Sideguards fit to the very edge of the belt, with no indent.
- Assembly does not require "finger cuts" on the modules, so the belt beam strength is not compromised.
- Makes the outer edge of the belt more snag-resistant.
- Keeps small products from falling through belt gaps.
- Turn ratio for 0.50 in (12.7 mm) overlapping sideguards is 1.6.

		Lane
Availabl	e Height	Available Materials
in	mm	Available Materials
0.75	19	Acetal, SELM

- Assembly does not require "finger cuts" on the modules, so the belt beam strength is not compromised.
- Lane dividers can be spaced 2 in (50.8 mm) apart along the width of the belt.
- Minimum indent requirements: contact Intralox Customer Service.



Conveyor Frame Dimensions

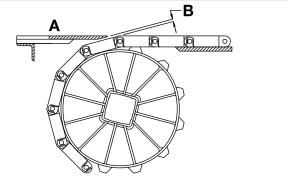
Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see *Basic Conveyor Frame Requirements*.

	Sprock	cet Desc	ription		Α		В		С		E	
Pitch Diameter		Nominal OD		No. Teeth	Range (Bottom to Top)		in	mm	in	mm	in	mm
in	mm	in	mm	No. reetii	in	mm	111		""		""	111111
Series 2800 Spiral GTech 1.6, 2.2 & 3.2 and DirectDrive												
6.3	160	6.5	165	13	2.75-2.84	70-72	2.51	64	6.27	159	3.49	89
Series 2800 Spiral GTech Rounded Friction Top												
6.3	160	6.5	165	13	2.75-2.84	70-72	2.51	64	6.51	165	3.74	95

Sprocket Description					Α		В		С		E	
Pitch Diameter		Nominal OD		No. Teeth	Range (Bottom to Top)		in	mm	in	mm	in	mm
in	mm	in	mm	reeur	in	mm						
Series 2800 Spiralox GTech 1.6, 2.2 & 3.2 Radius and DirectDrive												
6.3	160	6.5	165	13	2.75-2.84	70-72	2.51	64	6.27	159	3.49	89
Series 2800 Spiralox GTech Rounded Friction Top												
6.3	160	6.5	165	13	2.75-2.84	70-72	2.51	64	6.51	165	3.74	95

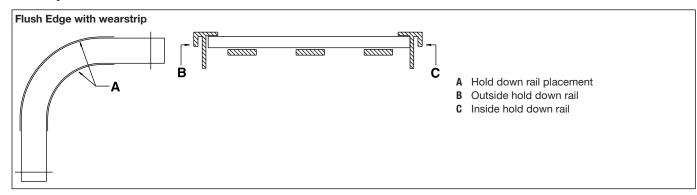


Dead Plate Gap

A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.



- A Top surface of dead plate
- B Dead plate gap

	Sprocket Description	Gap			
Pitch D	iameter	No. Teeth	in	mm	
in	mm	No. reeur	""		
6.3	160	13	0.091	2.3	

Hold Down Rails and Wearstrips

Intralox recommends using continuous hold down rails through an entire turn. Start the rails before the turn, at a distance of 1X the belt width. End the rails after the turn, at a distance of 1X the belt width. This applies to both carryway and returnway. The use of hold down rails along both side of the belt over the full carryway is recommended but not mandatory. See *Custom* Wearstrips.

Figure 16: Hold down rails and wearstrips for Series 2800 flat-turns

Belt Selection Instructions

For assistance with radius belt and low-tension capstan drive spiral selections, contact Intralox Customer Service Technical Support Group. Run the Engineering Program to ensure that the belt is strong enough for the radius application in question. See *Engineering Program Analysis for Spiral and Radius* for more information.

Series 2800 Design Guide Summary

For more information, see the Installation, Maintenance & Troubleshooting Manual available from Intralox.

- A The minimum turn radius for Series 2800 is 1.6 times the belt width, measured from the inside edge for the standard edge.
- B The minimum straight run required between turns of opposing direction is 1.6 times the belt width. Shorter straight sections lead to high wear on the edge guide rail and high pull stresses in the belt.
- **C** There is no minimum straight run required between turns that are in the same direction.
- D The minimum final straight run (leading to the drive shaft) must be a minimum of 5 ft (1.5 m). If 5 ft (1.5 m) is not feasible, shorter distances (down to 1.5 times belt width) require a weighted take up to avoid sprocket wear and tracking problems. See Special Take-up Arrangements.
- **E** The minimum length of the first straight run (immediately after the idle shaft) is 1.5 times the belt width. When shorter lengths are required (down to 1.0 times the width), an idle roller can be used in place of sprockets.
- F idle shaft
- G first turn
- H belt width
- I belt travel
 - J second turn
 - K drive motor
 - L drive shaft

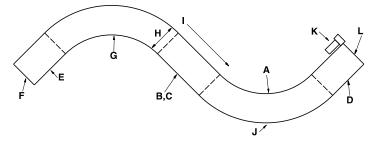
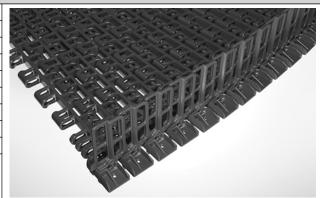
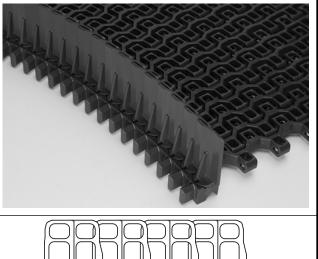
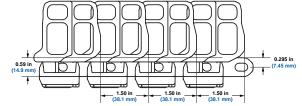



Figure 17: Typical two-turn radius layout




	DirectDrive						
	in	mm					
Pitch	1.5	38.1					
Minimum Width	12	304.8					
Width Increments	2.00	50.8					
Opening Sizes (approx.)	1.1 x 0.42	27.9 x 10.7					
Open Area (Fully Extended)	50	%					
Minimum Open Area	36	%					
Hinge Style	Ор	en					
Drive Method	Hinge-	driven					
Rod Retention; Rod Type	Occluded edg	ge; unheaded					

Stacker

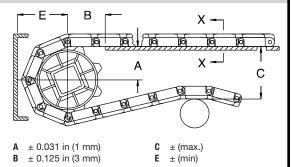
- This belt has pinch points. See the Safety section in the Intralox Conveyor Belting, Installation, Maintenance & Troubleshooting Manual for more information.
- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Lightweight, strong belt with smooth surface grid for good product release.
- · Belt openings pass straight through the belt to simplify cleaning.
- Relatively uniform open area across the width of the belt to aid product freezing and cooling.
- Sideplates are permanently installed and cannot be
- Designed for stacker applications using patented DirectDrive technology.
- 60-mm, 80-mm, & 100-mm tier spacing available.

Belt Data									
Belt material	Standard rod material Ø 0.240 in (6.1 mm)	Straight belt strength		Spiral belt strength ¹		Temperature range (continuous) ²		Belt weight	
	0.240 (0.1 (11(1))	lb./ft	kg/m	lbs.	kg	°F	°C	lb./ft. ²	kg/m²
Acetal	Acetal	1600	2381	475	215	-50 to 200	-46 to 93	1.96	9.57

¹ Published spiral belt strengths and their method of calculation vary among belt manufacturers. Please consult an Intralox Spiral Engineer for accurate comparison of spiral belt strengths.

² Sideflexing applications must not exceed 180°F (82°C).

	Acetal Sprockets ¹										
No. of	Nom.	Nom.	Nom.	Nom.	Nom.	Nom.	Av	ailable Bo	ore Sizes		
Teeth	Pitch	Pitch	Outer	Outer	Hub	Hub	U.S.		Metri	ic	
(Chordal	Dia.	Dia.	Dia.	Dia.	Width	Width	Round in	Square	Round	Square	
Action)	in	mm	in	mm	in	mm		in	mm	mm	
13	6.2	157.5	6.4	162.6	1.2	30.5	2	1.5		40	
(1.92%)							1-7/16	2.5		60	

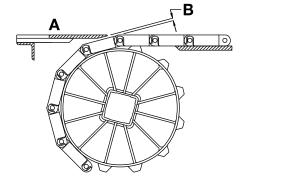

				S	/heel	
	le Pitch neter	Available Bore Sizes				
in	mm	Round in	S. Square in	Me Round mm	tric Square mm	
6.3	160	1-7/16	1.5 2.5		40	

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see *Basic Conveyor Frame Requirements*.

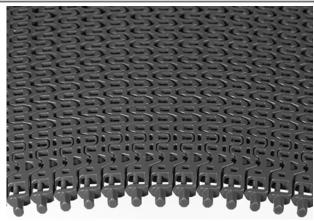

Sp	rocket Des	scription	Α	E	3	С		E		
Pitch D	Diameter	No. Teeth	Range (Botton	n to Top)	in mm		in	in mm		mm
in	mm	No. reetii	in	mm	""		""		in	
	S2850 DirectDrive Stacker									
6.3	160	13	2.75-2.84	70-72	2.51	64	6.27	159	3.49	89

Dead Plate Gap

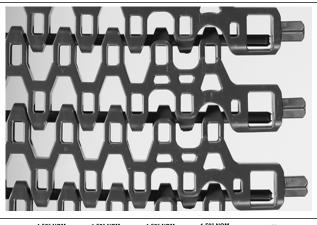
A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

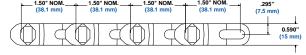
When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.


Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.



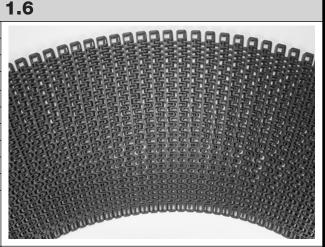
SERIES 2850


- A Top surface of dead plate
- B Dead plate gap

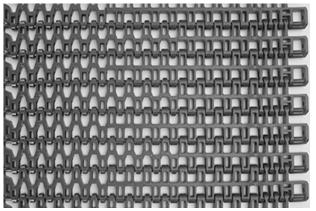

Sprocket Description			Gap		
Pitch D	iameter	No. Teeth	in	mm	
in	mm	No. reeur	111	""""	
6.3	160	13	0.091	2.3	

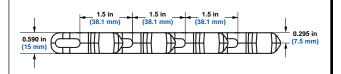
- This belt has pinch points. See the Safety section in the Intralox Conveyor Belting, Installation, Maintenance & Troubleshooting Manual for more information.
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a helt
- Belt openings pass straight through the belt to simplify cleaning.
- Robust edge feature adds strength to the outside edge of the belt.
- Relatively uniform open area across the width of the belt to aid product freezing and cooling.
- Minimum sprocket indent from the inside belt edge and from the outside belt edge can vary. Contact Intralox Customer Service to determine exact placement.

Belt Data									
Belt material	Standard rod material Ø 0.240 in (6.1 mm)	Straight belt strength		Spiral belt strength ²		Temperature range (continuous)		Belt weight	
	0.240 III (0.1 11111)	lb/ft	kg/m	lbs.	kg	°F	°C	lb./ft. ²	kg/m²
Acetal	Acetal	1600	2381	475	215	-50 to 200	-46 to 93	1.78	8.69
SELM	Acetal	500	744	375	170	-50 to 200	-46 to 93	1.46	7.13
Detectable MX	Detectable MX	1600	2381	475	215	-50 to 200	-46 to 93	2.08	10.16


¹ Width dimension includes tooth protrusion.

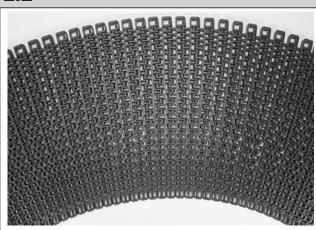
² Published spiral belt strengths and their method of calculation vary among belt manufacturers. Please consult an Intralox Spiral Engineer for accurate comparison of spiral belt strengths.




		Spiral
	in	mm
Pitch	1.5	38.1
Minimum Width ¹	13.5	343
Maximum Width ¹	61.7	1567
Width Increments	0.5	12.7
Opening Sizes (approx.)	0.52 x 0.39	13 x 10
Open Area (Fully Extended)	44	%
Minimum Open Area	26	%
Hinge Style	Op	en
Drive Method	Center/hin	ige-driven
Rod Retention; Rod Type	Occluded edg	ge; unheaded

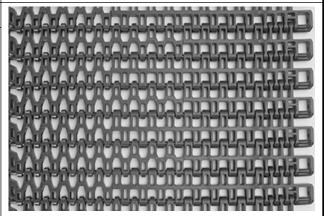
SERIES 2900

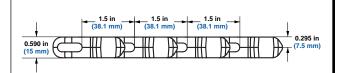
- This belt has pinch points. See the Safety section in the Intralox Conveyor Belting, Installation, Maintenance & Troubleshooting Manual for more information.
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- Belt openings pass straight through the belt to simplify cleaning.
- Robust edge feature adds strength to the outside edge of the belt.
- Relatively uniform open area across the width of the belt aids product freezing and cooling.
- · Cage-friendly inside edge and frame-friendly outside edge.
- Enhanced beam stiffness.
- Eliminates product contamination from metal-wear debris.
- Enables simple, quick repairs and changeovers.
- · Designed for friction drive, capstan, spiral applications with a minimum turn radius of 1.6 times the belt width (measured from the inside edge).
- Minimum sprocket indent from the inside belt edge and from the outside belt edge can vary. Contact Intralox Customer Service to determine exact placement.


Belt Data									
Belt material	Belt material Standard rod material Ø 0.240 in (6.1 mm)	Straight belt strength		Spiral belt strength ²		Temperat (contir	Belt weight		
		lb./ft.	kg/m	lbs.	kg	°F	°C	lb./ft. ²	kg/m²
Acetal	Acetal	1600	2381	475	215	-50 to 200	-46 to 93	1.78	8.69
SELM	Acetal	500	744	375	170	-50 to 200	-46 to 93	1.46	7.13

¹ Width dimension includes tooth protrusion.

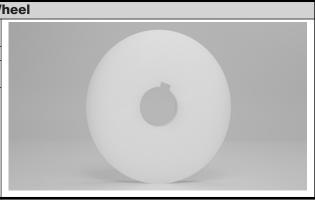
² Published curved belt strengths and their method of calculation vary among belt manufacturers. Please consult an Intralox Spiral Engineer for accurate comparison of curve belt strengths.




		Spiral
	in	mm
Pitch	1.5	38.1
Minimum Width ¹	13.5	343
Maximum Width ¹	61.7	1567
Width Increments	0.5	12.7
Opening Sizes (approx.)	0.52 x 0.39	13 x 10
Open Area (Fully Extended)	44	%
Minimum Open Area	26	%
Hinge Style	Ор	en
Drive Method	Center/hin	nge-driven
Rod Retention; Rod Type	Occluded edg	ge; unheaded

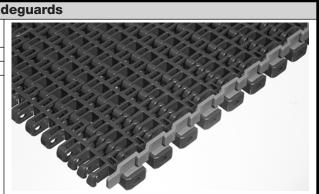
2.2

- This belt has pinch points. See the Safety section in the Intralox Conveyor Belting, Installation, Maintenance & Troubleshooting Manual for more information.
- · Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a
- · Belt openings pass straight through the belt to simplify cleaning.
- · Robust edge feature adds strength to the outside edge of
- Relatively uniform open area across the width of the belt aids product freezing and cooling.
- · Cage-friendly inside edge and frame-friendly outside edge
- Enhanced beam stiffness
- Eliminates product contamination from metal-wear debris
- Enables simple, quick repairs and changeovers.
- Designed for friction drive, capstan, spiral applications with a minimum turn radius of 2.2 times the belt width (measured from the inside edge).
- · Minimum sprocket indent from the inside belt edge and from the outside belt edge can vary. Contact Intralox Customer Service to determine exact placement.


	Belt Data												
Belt material	Standard rod material Ø 0.240 in (6.1 mm)	Straight belt strength		Spiral belt strength ²		Temperature range (continuous)		Belt weight					
	0.240 III (6.1 IIIIII)	lb./ft.	kg/m	lbs.	kg	°F	°C	lb./ft. ²	kg/m²				
Acetal	Acetal	1600	2381	475	215	-50 to 200	-46 to 93	1.78	8.69				
SELM	Acetal	500	744	375	170	-50 to 200	-46 to 93	1.46	7.13				

¹ Width dimension includes tooth protrusion.

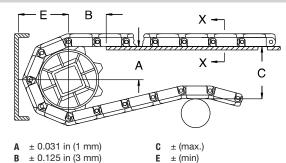
² Published curved belt strengths and their method of calculation vary among belt manufacturers. Please consult an Intralox Spiral Engineer for accurate comparison of curve belt strengths.


							Aceta	l Spro	ckets¹		
No. of		Nom.	1	1	1	Nom.		ailable B	ore Sizes		
Teeth		Pitch		1		Hub	U.S.		Metr		
(Chordal		Dia.	Dia.	Dia.	Width	Width	Round in	Square	Round	Square	·e
Action)	in	mm	in	mm	in	mm		in	mm	mm	
13	6.2	157	6.4	163	1.2	30.5	1-7/16	1.5		40	
(2.97%)							2	2.5		60	
					1						
					1						
					1						

				S	upport W					
	le Pitch		Available Bore Sizes							
Dian	Diameter									
		U	.S.	Me	tric					
in	mm	Round	Square	Round	Square					
		in	in	mm	mm					
6.3	160	1-7/16	1.5		40					
		2	2.5	60						

		Overlapping Signature								
Availabl	e Height	Available Materials								
in	mm	Available iviaterials								
0.50	12.7	Acetal								
1.0	25.4	Acetal								
• Mavinoizaa	A Maximized product corning consoits. Cideguards fit to the year adde									

- Maximizes product carrying capacity. Sideguards fit to the very edge of the belt, with no indent.
- Assembly does not require "finger cuts" on the modules, so the belt beam strength is not compromised.
- Makes the outer edge of the belt more snag-resistant.
- Keeps small products from falling through belt gaps.
- Turn ratio for 0.50 in (12.7 mm) overlapping sideguards 1.6.

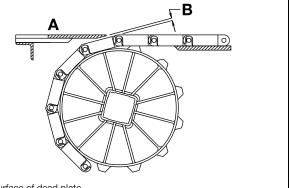

		Lane D	ividers
Availabl	le Height	Available Materials	
in	mm	Available Waterlas	>477978 1
0.75	19	Acetal, SELM	

Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in any design.

For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see Basic Conveyor Frame Requirements.

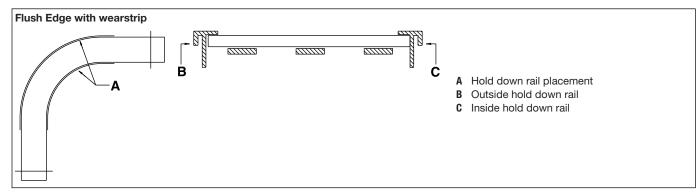

Spr	Sprocket Description			A			C	;	E	■		
Pitch D	iameter	No. Teeth	Range (Bottom to Top)		in	mm	in	mm	in	mm		
in	mm	No. reeur	in	mm	""		""		""			
	Series 2900 Spiral DirectDrive											
6.3	160	13	2.75-2.84	70-72	2.51	64	6.27	159	3.49	89		

Dead Plate Gap

A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.


A Top surface of dead plate

B Dead plate gap

	Sprocket Description	Gap			
Pitch D	Pitch Diameter		in	mm	
in	mm	No. Teeth	""	11/111	
6.3	160	13	0.091	2.3	

Hold Down Rails and Wearstrips

Intralox recommends using continuous hold down rails through an entire turn. Start the rails before the turn, at a distance of 1X the belt width. End the rails after the turn, at a distance of 1X the belt width. This applies to both carryway and returnway. The use of hold down rails along both side of the belt over the full carryway is recommended but not mandatory. See *Custom Wearstrips*.

Figure 18: Hold down rails and wearstrips for Series 2900 flat-turns

Belt Selection Instructions

For assistance with radius belt and low-tension capstan drive spiral selections, contact Intralox Customer Service Technical Support Group. Run the Engineering Program to ensure that the belt is strong enough for the radius application in question. See *Engineering Program Analysis for Spiral and Radius* for more information.

Series 2900 Design Guide Summary

For more information, see the Installation, Maintenance & Troubleshooting Manual available from Intralox.

- A The minimum turn radius for Series 2900 is 1.6 times the belt width, measured from the inside edge for the standard edge.
- B The minimum straight run required between turns of opposing direction is 1.6 times the belt width. Shorter straight sections lead to high wear on the edge guide rail and high pull stresses in the belt.
- **C** There is no minimum straight run required between turns that are in the same direction.
- The minimum final straight run (leading to the drive shaft) must be a minimum of 5 ft (1.5 m). If 5 ft (1.5 m) is not feasible, shorter distances (down to 1.5 times belt width) require a weighted take up to avoid sprocket wear and tracking problems. See Special Take-up Arrangements.
- **E** The minimum length of the first straight run (immediately after the idle shaft) is 1.5 times the belt width. When shorter lengths are required (down to 1.0 times the width), an idle roller can be used in place of sprockets.
- F idle shaft
- **G** first turn
- H belt width
- I belt travel
- J second turn
 - K drive motor
 - L drive shaft

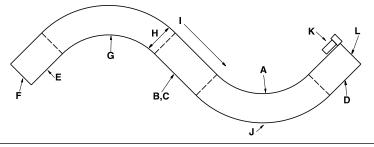
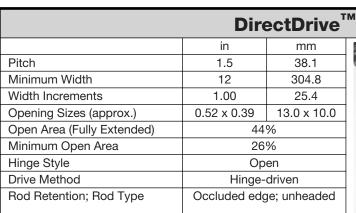
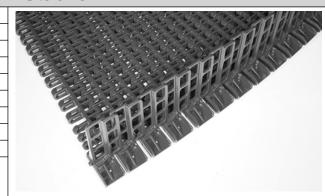
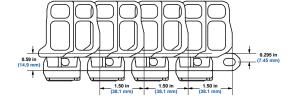




Figure 19: Typical two-turn radius layout



Stacker

- This belt has pinch points. See the Safety section in the Intralox Conveyor Belting, Installation, Maintenance & Troubleshooting Manual for more information.
- Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a helt
- Lightweight, strong belt with smooth surface grid for good product release.
- Belt openings pass straight through the belt to simplify cleaning.
- Relatively uniform open area across the width of the belt to aid product freezing and cooling.
- Sideplates are permanently installed and cannot be replaced.
- Designed for stacker applications using patented DirectDrive technology.
- 60-mm, 80-mm, & 100-mm tier spacing available.

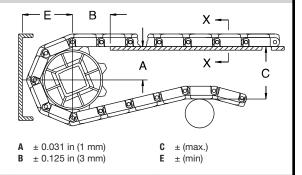
	Belt Data											
Belt material	Standard rod material Ø 0.240 in (6.1 mm)	Straight belt strength		Spiral belt strength ¹		Temperature range (continuous) ²		Belt weight				
	0.240 in (6.1 min)	lb/ft	kg/m	lb	kg	°F	°C	lb/ft²	kg/m²			
Acetal	Acetal	1600	2381	475	215	-50 to 200	-46 to 93	2.18	10.64			

¹ Published spiral belt strengths and their method of calculation vary among belt manufacturers. Please consult an Intralox Spiral Engineer for accurate comparison of spiral belt strengths.

² Sideflexing applications must not exceed 180°F (82°C).

SERIES 2950

No. of Nom. Nom. Nom. Nom. Nom. Available Bore Sizes	
Teeth Pitch Pitch Outer Outer Hub Hub U.S. Metric (Chordal Dia. Dia. Dia. Width Width Round in Square Round Sc	
Na	Square
,	40
(2.97%)	60


				S	upport W	heel
	ole Pitch meter		Available	Bore Sizes		
		U.	S.	Me	etric	
in	mm	Round	Square	Round	Square	
		in	in	mm	mm	
6.3	160	1-7/16	1.5		40	
		2	2.5		60	

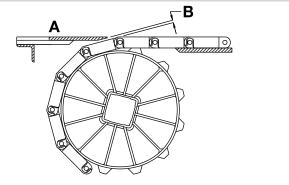
Conveyor Frame Dimensions

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions A, B, C, and E are implemented in

For general applications and applications where end transfer of tip-sensitive product is not critical, use the A dimension at the bottom of the range.

For complete descriptions of the dimensions, see Basic Conveyor Frame Requirements.

Sp	Sprocket Description A				В		С		Е			
Pitch D	iameter	No. Teeth	Range (Bottom to Top)		in	mm	in	mm	in	mm		
in	mm	No. reeur	in	mm	""		""	111111	""			
	DirectDrive Stacker											
6.2	157	13	2.71-2.81	69-71	2.47	63	6.20	157	3.46	88		



Dead Plate Gap

A gap is needed at transfer points between a belt without finger transfer plates and a dead plate. This gap between surfaces allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. The following table lists the minimum gap between the dead plate and the belt. This measurement is the minimum gap that occurs at the low point of the module, as the high point of the module just contacts the dead plate.

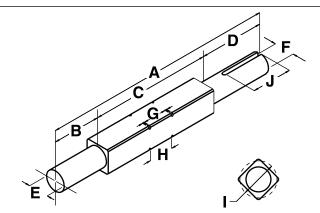
When it is necessary to maintain contact between the tip of the dead plate and the belt, hinge the dead plate mounting bracket. Hinging the mounting bracket allows the dead plate to move as the modules pass. Note: hinged mounting brackets create a small oscillating motion that can cause tippage problems for sensitive containers or products.

Note: The top surface of the dead plate is typically 0.031 in (0.8 mm) above the belt surface for product transfer onto the belt. For product transfer off the belt, the top surface of the dead plate is typically 0.031 in (0.8 mm) below the belt surface.

SERIES 2950

- A Top surface of dead plate
- B Dead plate gap

Sprocket Description			Ga	p
Pitch D	iameter	No. Teeth	in	mm
in	mm	No. reetii	ın	""""
6.2	157	13	0.092	2.3


Square Shafts

Machined to Customer Specifications

After the stock is cut to length, the raw shaft is precision straightened. The bearing journals are turned, followed by the cutting of retainer ring grooves, keyways, and chamfers*. The final step is a thorough, quality control inspection before shipping. For help with specifying shaft dimensions, contact Intralox Customer Service.

*If the shaft is to operate under high belt loads, retainer ring grooves are not recommended. Self-set or split heavy-duty retainer type rings are recommended in these cases. Contact the Technical Support Group for retainer ring recommendations.

Note: If using the shaft in a hollow gearbox, contact Intralox Customer Service.

DIMENSIONS REQUIRED:

A - Length: overall F - Diameter: drive-end journal G - Width: retainer ring groove

B - Length: bearing-end journal C - Length: square section

H - Width: sprocket hub

E - Diameter: bearing journal

D - Length: drive-end journal and I - Diameter: ring groove keyway dimensions

J - Length of keyway

Figure 20: Shaft dimensions

Shafts Available from Intralox USA¹ Shaft Tolerances in Inches						
Square Size	Carbon Steel	Stainless Steel	Stainless Steel			
	(C-1018)	(303/304)	(316)			
5/8 in	0.000 to -0.003	0.000 to -0.004	0.000 to -0.004			
1 in	0.000 to -0.003	0.000 to -0.004	0.000 to -0.004			
1.5 in	0.000 to -0.003	0.000 to -0.006	0.000 to -0.006			
2.5 in	0.000 to -0.004	0.000 to -0.008	0.000 to -0.008			
3.5 in ²	0.000 to -0.005	0.000 to -0.005	N/A			

Shafts Available from Intralox Europe ³ Shaft Tolerances in Millimeters					
Square Size Carbon Steel (KG-37) Stainless Steel (303/30					
25 mm	0.000-0.130	0.000-0.130			
40 mm	0.000-0.160	0.000-0.160			
60 mm	0.000-0.180	0.000-0.180			
65 mm	0.000-0.180	0.000-0.180			
90 mm	0.000-0.220	0.000-0.220			

Shaft Dimensions and Tolerances					
Shaft	Retainer Ring Groove and Chamfer Dimensions				
Size	Groove	Width	Chamfer ⁴		
5/8 in	0.762 ± 0.003	0.046 + 0.003/- 0.000 in	0.822 ± 0.010 in		
1 in	in 1.219 ± 0.005 in	0.056 + 0.004/- 0.000 in	1.314 ± 0.010 in		
1.5 in	1.913 ± 0.005 in	0.086 + 0.004/- 0.000 in	2.022 ± 0.010 in		
2.5 in	3.287 ± 0.005 in	0.120 + 0.004/- 0.000 in	3.436 ± 0.010 in		
3.5 in	4.702 ± 0.005 in	0.120 + 0.004/- 0.000 in	4.850 ± 0.010 in		
25.4 mm	30 ± 0.1 mm	2.0 + 0.15/- 0.00 mm	33 ± 0.25 mm		
40 mm	51 ± 0.1 mm	2.5 + 0.15/- 0.00 mm	54 ± 0.25 mm		
60 mm	80 ± 0.1 mm	3.5 + 0.15/- 0.00 mm	82 ± 0.25 mm		
65 mm	85 ± 0.1 mm	3.5 + 0.15/- 0.00 mm	89 ± 0.25 mm		
90 mm	120 ± 0.1 mm	4.5 + 0.15/- 0.00 mm	124 ± 0.25 mm		

Note: In some instances, the retainer ring grooves must be offset from the shaft center. See Retaining Sprockets

Tolerances (Unless otherwise specified)

Overall length $< 48 \text{ in } \pm 0.061 \text{ in } (< 1200 \pm 0.8 \text{ mm})$

 $> 48 \text{ in} \pm 0.125 \text{ in} (> 1200 \pm 1.2 \text{ mm})$

- 0.0005 in/- 0.003 in (Øh7 vlgs. NEN-Journal diameter

ISO 286-2)

+ 0.003 in/- 0.000 in (+ 0.05/- 0.00 Keyway widths

mm)

Surface Finishes

Journal 63 microinches (1.6 micrometers) Other machined 125 microinches (3.25 micrometers)

surfaces

Unless otherwise specified — USA keyways are for parallel square keys (ANSI B17.1 - 1967, R1973).

Metric keyways are for flat, inlaid keys with round ends (DIN

6885-A).

¹ Consult Intralox for shafts longer than 12 ft

² 3.5 incarbon steel shafts can be Nickel Plated for corrosion resistance.

³ Consult Intralox for shafts longer than 2 m.

⁴ Shaft must be chamfered for Series 200, 400 and 800 molded sprockets to fit.

Retainer Rings/Center Sprocket Offset

Selecting Recommended Retainer Rings

Intralox recommends the use of retainer rings to fix the location of one sprocket on each shaft. The fixed sprocket limits transverse movement of the belt during operation. In many applications, spring-type rings are used with success; however these rings require cutting small grooves into the corners of the shafts. In some applications where belt loads are higher and stresses in the shaft are greater, the presence of ring grooves is undesirable, as they create places where stresses are concentrated. In these cases, Intralox recommends using alternative retainer rings that require no grooves, such as the Self-Set or Split Collar rings.

Use *Table 10* to identify recommended limits of belt pull versus shaft span between bearings, then determine if retainer ring grooves can be used. For a given shaft size and span, if the belt pull (BP), exceeds the values shown, select a ring that requires no grooves in the shaft.

Standard Retainer Rings

- Plastic retainer rings are available in sizes to fit 1.5 in and 2.5 in square shafts.
- Plastic retainer rings are made from polysulfone.
- The temperature range of polysulfone is -125°F to 300°F (-98°C to 149°C).
- Plastic retainer rings require grooves identical to the grooves used for stainless steel retainer rings on 1.5 in and 2.5 in shafts. See the groove chart in the stainless steel retainer ring section for information.
- Plastic retainer rings have the following restrictions:

Plastic Retainer Ring Restrictions					
	Standa	rd retainer rin	gs do NOT wo	ork with the fo	llowing
Retainer			sprockets		
Ring Size	Series	Pitch d	iameter	Bore	Size
	Series	in	mm	in	mm
1.5 in	400	4.0	102	1.5	40
1.5 111	1600	3.2	81	1.5	40
2.5 in	400	5.2	132	2.5	40
	1100	3.1	79	2.5	40

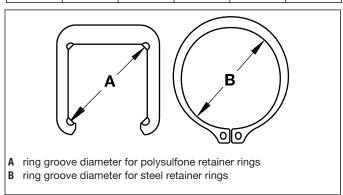


Figure 21: Retainer rings

- Stainless steel retainer rings are available to fit 5/8 in, 1.0 in, 1.5 in, 2.5 in, 3.5 in, 25.4 mm, 40 mm, 60 mm, 65 mm, and 90-mm square shafts.
- The following ANSI Type 3AMI rings, conforming to MIL SPEC R-2124B are available:

Shaft	Retainer Ring Groove and Chamfer Dimensions			
Size	Groove Dia.	Width	Chamfer ¹	
5/8 in	0.762 ± 0.003 in	0.046 + 0.003/- 0.000 in	0.822 ± 0.010 in	
1 in	1.219 ± 0.005 in	0.056 + 0.004/- 0.000 in	1.314 ± 0.010 in	
1.5 in	1.913 ± 0.005 in	0.086 + 0.004/- 0.000 in	2.022 ± 0.010 in	
2.5 in	3.287 ± 0.005 in	0.120 + 0.004/- 0.000 in	3.436 ± 0.010 in	
3.5 in	4.702 ± 0.005 in	0.120 + 0.004/- 0.000 in	4.850 ± 0.010 in	
25.4 mm	30 ± 0.1 mm	2.0 + 0.15/- 0.00 mm	33 ± 0.25 mm	
40 mm	51 ± 0.1 mm	2.5 + 0.15/- 0.00 mm	54 ± 0.25 mm	
60 mm	80 ± 0.1 mm	3.5 + 0.15/- 0.00 mm	82 ± 0.25 mm	
65 mm	85 ± 0.1 mm	3.5 + 0.15/- 0.00 mm	89 ± 0.25 mm	
90 mm	120 ± 0.1 mm	4.5 + 0.15/- 0.00 mm	124 ± 0.25 mm	
Note: In some instances, the retainer ring grooves are offset from the shaft center. See Retaining Sprockets				

• Stainless steel retainer rings have the following restrictions:

Stainless Steel Retainer Ring Restrictions					
Retainer	Stainless steel retainer rings do not work with the following sprockets Series Pitch diameter ²				
ring size					
3126	Series	in	mm		
1.219	900	2.1	53		
in	1100	2.3	58		

¹ For Series 200, 400, and 800 molded sprockets, shafts must be chamfered to fit.

² To lock down the Series 900 2.1 in (53 mm) and (58 mm) pitch diameter sprockets, a setscrew is required. Place the setscrew on each side of the sprocket. Contact Intralox Sales Engineering for more information

PRODUCT LINE

6s

152

Locked Sprocket Position on Shaft

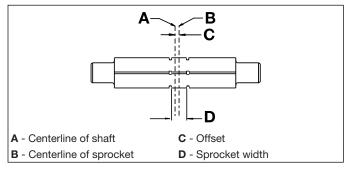


Figure 22: Locked sprocket position

Center Sprocket Offset					
Series	Number of Links	Offset		Max. Sprocket Spacing	
		in	mm	in	mm
100	even	0	0	6	152
	odd	0.12	3	6	152
200	even/odd	0	0	7.5	191
200 RR	even/odd	0.09	2.3	7.5	191
400	even	0	0	6	152
	odd	0.16	4	6	152
400 RT, ARB, TRT		See bottom	of chart.		
550	even	0	0	5	127
	odd	0.5	12.7	5	127
800	even/odd	0	0	6	152
800 Angled EZ Clean ¹	even/odd	0.16	4	6	152
800 RR	even	3	76	6	152
	odd	0	0	6	152
850	even/odd	0	0	6	152
888	See Series 8	888 section in the Insta Intralox Custon		or cor	ntact
900	even	0	0	4	102
900	odd	0.16	4	4	102
900 OFG	See Series 9	000 section in the Insta Intralox Custon		or cor	itact
1000	even	0	0	6	152
1000	odd	0.25	6.44	6	152
	even (whole)	0	0	4	102
1100 ²	odd (whole)	0.5	12.7	4	102
1100	even/odd (0.5 in 12.7-mm increments)	0.25	6.35	4	102
1100 EZ Tracking	even (whole)	0.19	4.8	4	102
Sprockets	odd (whole)	0.31	7.9	4	102

Center Sprocket Offset					
Series	Number of Links	Offs	et	Ma Sprod	cket
	LIIKS	in	mm	Spac	
	even/odd	!!!!	mm		mm
	(0.5 in 12.7-mm increments)	0.06	1.52	4	102
1200		ries 1200 section in the or contact Intralox C		6	152
1400	even	0	0	6	152
1400	odd	0.5	12.7	6	152
1400 FG		ries 1400 section in the or contact Intralox C		6	152
1500	See Ser	ries 1500 section in th	e Installation	6	152
1500	Instructions	or contact Intralox C	ustomer Service.	6	152
1600	even/odd	0	0	4	102
1650 ³	even/odd	0.25	6.4	4	102
1700	even	0.5	12.7	E	107
1700	odd	0	0	5	127
4	odd	0.5	12.7		
1750 ⁴	even	0	0	4	102
1800	even/odd	0	0	6	152
1900	See Ser	See Series 1900 section in the Installation Instructions or contact Intralox Customer Service.			76
2100	even/odd	1.97	50	3.94	100
_	even	0.25 to the left ⁶	6.4 to the left ⁵	4	102
2200 ⁵	odd	0.25 to the right ⁷	6.4 to the right ⁶	4	102
	even	0	0.710 tho right	6	152
2300	odd	1.5	38	6	152
	even	0.125 to the left ⁵	3.2 to the left ⁵	6	152
2400 ⁴ 8	odd	0.125 to the end of the right o	3.2 to the left	6	152
2600	even/odd	0	0	8	203
2700	even/odd	0	0	8	203
	even	0	0		
2800	odd	0.5	12.7	6	152
4400	even/odd	0.5	12.7	9	229
	even	0.5	12.7	6	152
4500	odd	0	0	6	152
4500 Dual	even	0	0	6	152
Tooth					
Sprockets	odd	0.5	12.7	6	152
9000	even	0.5	12.7	4	102
3000	odd	0	0	4	102
10000	even	0.25 to the left ⁵	6.3 to the left ⁵	5.91	150
Hinge Drive (preferred)	odd	0.25 to the right ⁶	6.3 to the right ⁶	5.91	150
10000	even	0.25 to the right ⁶	6.3 to the right ⁶	5.91	150
Center Drive	odd	0.25 to the left ⁵	6.3 to the left ⁵	5.91	150
	Number of				
	rollers per				
	row				
400 RT,	even	0	0	6	152

ARB, TRT

odd

 $^{^{\}mbox{\tiny 1}}$ 6, 10, and 16 tooth sprockets can be placed on belt centerline

² The 8 and 12 tooth steel sprockets can be placed on belt centerline

^{3 20} tooth sprocket has 0 offset

 $^{^{\}rm 4}$ When determining number of links, drop the 0.5 link

⁵ When determining number of links, drop the 0.5 link

 $^{^{\}rm 6}$ To the left of the shaft centerline in direction away from keyed journal

 $^{^{\}rm 7}$ To the right of the shaft centerline in direction toward keyed journal

⁸ Assuming belt is running in preferred direction

PRODUCT LINE

Self-Set Retainer Rings

Self-set retainer rings are available to fit 1.0 in, 1.5 in, 2.5 in, 3.5 in, 40 mm, 60 mm, and 65-mm shafts.

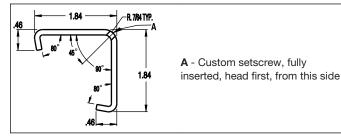


Figure 23: Self-set retainer rings

- Retainer rings are made from non-corrosive 316 stainless steel
- There is no need for machined grooves on the shaft and the shaft does not need to be removed to install these retainer rings.
- Self-set retainer rings are USDA-FSIS accepted.
- Self-set retainer rings snap into place on the square shaft and are fixed in position with a unique setscrew that cannot fall out of the retainer ring during operation.

- The shaft must have chamfered edges for the retainer ring to work properly.
- Self-set retainer rings are not recommended in applications where high lateral forces are to be expected.
- Self-set retainer rings have the following restrictions:

Self-Set Retainer Ring Restrictions						
	Self-set retaine	r rings do NOT work w	ith the following			
Retainer		sprockets:				
ring size	Series	Pitch d	iameter			
	Series	in	mm			
	100	2.0	51			
1.0 in	900	2.1	53			
	1100	2.3	58			
	900	3.1	79			
40 mm	1000	3.1	79			
40 111111	1100	3.1	79			
	1600	3.2	81			
65 mm	400	5.2	132			

Round Shaft Retainer Rings

- Round shaft retainer rings are available to fit 0.75 in, 1.0 in, and 25.4-mm round shafts.
- These retainer rings are made of stainless steel.

PRODUCT LINE

These retainer rings are for use with the Series 1100 1.6 in (41 mm) and 2.3 in (58 mm) pitch diameter sprockets.

Figure 24: Retainer ring on round shaft

These retainer rings do not require a groove for placement, they stay in place using friction. It is very important that grooves are not used on round shafting, as this will cause fatigue and shaft failure.

Split Collar Retainer Rings

Split collar retainer rings are available to fit the following shaft sizes:

Split Collar Retainer Ring/Shaft Sizes			
Square shaft	Round shaft		
1.5 in	3/4 in		
2.5 in	1 in		
40 mm	1-3/16 in		
60 mm	1-1/4 in		
	1-3/8 in		
	1-7/16 in		
	1-1/2 in		
	2 in		

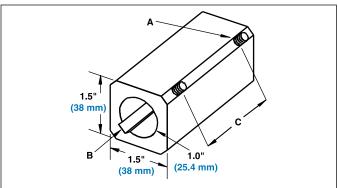
- The retainer rings are made from 304 stainless steel.
- For use in applications with high lateral loads on the sprockets.
- These retainer rings do not require the shaft to be chamfered and the shaft does not have to be removed, providing ease of
- Split collar retainer rings have the following restrictions:

Split Collar Retainer Ring Restrictions					
	Split collar retain	Split collar retainer rings will NOT work with the following			
Retainer		sprockets			
ring size	Series	Pitch d	iameter		
	Selles	in	mm		
	400	4.0	102		
	900	3.1	79		
1.5 in	900	3.5	89		
and 40	1000	3.1	79		
mm	1100	3.1	79		
	1100	3.5	89		
	1600	3.2	81		
	400	5.2	132		
2.5 in	1100	4.6	117		
and 60	1400	4.9	124		
mm	2600	5.2	132		
	2700	5.2	132		

Figure 25: Split collar retainer rings

Round Bore Adapters

Sprocket inserts are available to adapt 1.5 in square bore sprockets to use 1 in diameter shafts. They are only recommended for lightly loaded belts or for narrow belt widths, up to 18 in (460 mm).

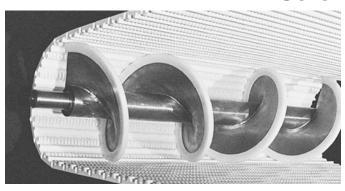

Adapters are made in glass filled polypropylene for strength and chemical resistance. However, these adapters are not to be used with split or abrasion resistant sprockets.

Two adapter sizes are available - 2.5 in (64 mm) and 3.5 in (89 mm) long. Setscrews are provided to retain the sprockets on the adapters and to lock the center sprocket to the shaft. The 3.5 in (89 mm) adapter has a third tapped hole to accommodate a range of hub widths. To determine which adapter to use with a given sprocket hub width, see the following *Round Bore Adapter Selection Table*.

For certain sprocket hub width/adapter size combinations, more than one sprocket can be placed on each adapter. See the sprockets/adapter column in the following *Round Bore Adapter Selection Table* for more information.

The 2.5 in (64 mm) adapter has a torque limit of 875 in-lb (10,000 mm-kg). The 3.5 in (89 mm) adapter is limited to 1200 in-lb (13,800 mm-kg). The operating temperature limits are between $45^{\circ}F$ (7°C) and $120^{\circ}F$ (50°C).

Round bore adapters are not recommended for use with split sprockets or abrasion resistant sprockets.


- A 1/4 in $20 \times 5/8$ in setscrews (UNC threads)
- **B** Keyway 0.25 in × 0.125 in (6 mm × 3 mm)
- C Gap between setscrews:

2.5	(64	Adapter
in	mm)	
1.5	(38	Gap
in	mm)	
3.5	(89	Adapter
in	mm)	
2.5	(64	Gap
in	mm)	

Figure 26: Round bore adapter

Round Bore Adapter Selection Table ¹							
Sprocket		Center Locked Sprocket			Floating Sprockets		
Hub Widths		Adapte	dapter Sizes Sprockets/		Adapter Sizes		Sprockets/
in	mm	in	mm	Adapter	in	mm	Adapter
0.75	19	2.5	64	2	2.5	64	1
1.00	25	2.5	64	1	3.5	89	1
1.25	32	3.5	89	2	3.5	89	1
1.50	38	2.5	64	1	3.5	89	1
2.50	64	3.5	89	1	3.5	89	1

Scroll Idlers

Scrolls from Intralox may be used in applications where the drive end shaft and sprockets must be kept clean. The curved, flighted surfaces of the scroll direct debris away from the belt center, toward the edges, where it can fall harmlessly to the floor or receptacle.

Intralox offers scrolls in two nominal diameters: 6 in (152 mm) and 9 in (229 mm). Flight pitch, the axial distance for the flight to sweep through a full circle, is also 6 in (152 mm) and 9 in (229 mm), respectively. Since the scroll is also supporting the idle end of the belt, each nominal diameter has an associated minimum scroll length to ensure proper belt support. For very narrow belts, or for extra support, a double-flighted scroll is available. All scrolls are mounted on a 2.5 in (63.5 mm) diameter round shaft. Maximum journal diameter is 2.5 in (63.5 mm) and minimum journal length is 2 in (50.8 mm).

Scroll Dimensions, in (mm)			
Nominal Diameter	Actual Diameter	Min Single- Flighted Scroll Length ¹	Min Double-Flighted Scroll Length ¹
6 (152)	6.7 (170)	12.5 (318)	6.5 (165)
9 (229)	9.7 (246)	18.5 (470)	9.5 (241)

Intralox scrolls are offered in carbon and stainless steel materials. Carbon steel scrolls are treated and painted for protection. All scrolls have a thick section of UHMW wearstrip attached to the flight edges. Stainless steel scrolls with a polished weld bead are available for USDA-FSIS applications.

Scrolls from Intralox may be used in applications where excessive amounts of debris may hamper the performance of sprockets or possibly damage the belt.

Position the scroll idler assembly in the conveyor frame so the "V" at the center of the scroll (where the left and right flights meet) points in the direction of belt travel. Adjust the shaft take-ups, if there is one, to have even tension on both sides.

	Flight Material			
Scroll Features	Carbon	Stainless Steel	Stainless Steel	
	Steel		USDA-FSIS	
6 in (152 mm) Scroll Size	•	•	•	
9 in (229 mm) Scroll Size	•	•	•	
Intermittent Welds	•	•		
Continuous, Polished Welds			•	
UHMW Flight Edging	•	•	•	
Primer Gray Paint	•			

Intralox scrolls have no built-in tracking ability. It may be necessary to use side-mounted wearstrips on the idle end.

Wearstrips

Flat Wearstrips

Standard flat wearstrips are available in UHMW, HDPE (High-Density Polyethylene) and Nylatron (a Molybdenum-filled nylon). UHMW and HDPE wearstrips measure 0.25 in (6 mm) thick \times 1.25 in (32 mm) wide \times 120 in (3048 mm). Nylatron wearstrips measure 0.125 in (3 mm) thick \times 1.25 in (32 mm) wide \times 48 in (1219 mm). UHMW and HDPE wearstrips are FDA and USDA-FSIS compliant for direct food contact. Nylatron wearstrip is not FDA or USDA-FSIS accepted for food applications.

Flat finger-joint wearstrips have a notched end design which provides overlapping sections for continuous support. UHMW wearstrips are available in 24 in (610 mm) and 60 in (1524 mm) lengths. HDPE wearstrip is available in 24 in (610 mm) lengths. Fasteners are supplied.

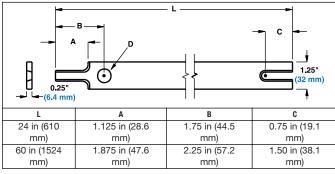


Figure 27: Flat finger-joint wearstrips

Angle and Clip-on Wearstrips

Intralox also offers various angle and clip-on wearstrips. All clip-on wearstrips styles come in 120 in (3048 mm) lengths. These wearstrips are designed to attach directly to the conveyor frame without fasteners.

- For new applications, use flat wearstrips with wide surface area for carryways and returnways.
- Use clip-on wearstrips only for lightly loaded retrofit applications or to prove concepts. They are not recommended for normal production operation.
- Contact Intralox Customer Service for application-specific information.

Figure 28: UHMW Specialty wearstrips

Stainless Steel Backed UHMW Wearstrip

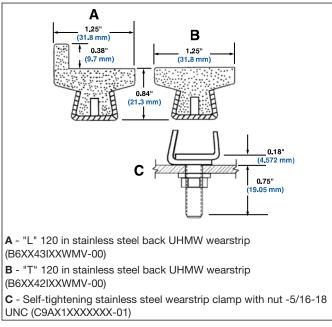


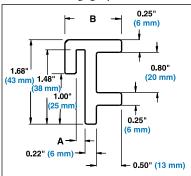
Figure 29: Stainless steel backed UHMW wearstrips

- Stainless steel backed UHMW wearstrip can be used to create a rigid belt carryway surface on any frame with cross members.
- Stainless steel backed UHMW wearstrip is mounted to cross members with a self-tightening stainless steel clamp with

- nut (self-tightening stainless steel clamp with nut sold separately).
- · Can be installed in parallel, chevron, or other configurations.
- Recommended for temperatures up to 160°F (71°C).
- Available in two profiles: Flat wearstrip ("T") and "L"
- Available in 120 in (3048 mm) lengths.
- Installation of wearstrips should allow for thermal expansion and contraction.
- · Always chamfer or bend down the leading edges of any wearstrip.

UHMW Pressure Sensitive Tape

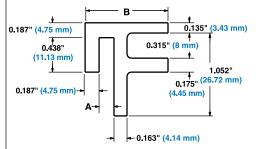
Intralox offers UHMW self-adhering wearstrip tape in rolls of 54 ft. (16.5 m). This tape can be used for quick and easy conversion of steel wearstrips to a lower friction UHMW wearstrip. The 1 in (25.4 mm) wide and 2 in (50.8 mm) wide tape is available 0.010 in (0.25 mm) and 0.030 in (0.76 mm) thick.


Note: UHMW pressure sensitive tape is only to be used in light-duty applications and temporary solutions.

Custom Wearstrips

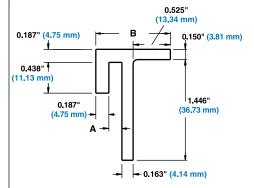
Radius Belt Wearstrips

All radius belt wearstrips are available in natural UHMW and self-lubricating, grey, oil-filled UHMW. The angle and center


rail wearstrips utilize the EZ Clean design. All wearstrips are available in either 1/8 in (3.2 mm) or 3/16 in (4.7 mm) sizes. S2400 available in UHMW only.

Standard edge, hold down wearstrip

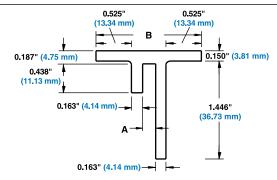
UHMW - 1/8 in (3.2 mm) - (B6XX33IXXWMV-00) 3/16 in (4.7 mm) (B6XX32IXXWMV-00).


Oil-filled UHMW - 1/8 in (3.2 mm) - (B6XX33IXXWMW-00) 3/16 in (4.7 mm) (B6XX32IXXWMW-00).

Tabbed edge, hold down wearstrip

UHMW - 1/8 in (3.2 mm) - (B6XX39IXXWMV-20) 3/16 in (4.7 mm) (B6XX38IXXWMV-10).

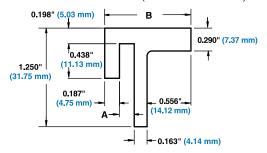
Oil-filled UHMW - 1/8 in (3.2 mm) - (B6XX39IXXWMW-00) 3/16 in (4.7 mm) (B6XX38IXXWMW-00).



Radius belt wearstrip, Angle hold down wearstrip

UHMW - 1/8 in (3.2 mm) - (B6XX37IXXWMV-00) 3/16 in (4.7 mm) (B6XX36IXXWMV-00).

Oil-filled UHMW - 1/8 in (3.2 mm) - (B6XX37IXXWMW-00) 3/16 in (4.7 mm) (B6XX36IXXWMW-00).


Figure 30: 120 in UHMW radius belt custom wearstrips

Radius belt wearstrip, Center rail hold down wearstrip

UHMW - 1/8 in (3.2 mm) - (B6XX41IXXWMV-00) 3/16 in (4.7 mm) (B6XX40IXXWMV-00).

Oil-filled UHMW - 1/8 in (3.2 mm) - (B6XX41IXXWMW-00) 3/16 in (4.7 mm) (B6XX40IXXWMW-00).

Radius belt wearstrip, Series 2400, hold down guide wearstrip **UHMW** - 1/8 in (3.2 mm) - (B6F546IXXWMV-00) 3/16 in (4.7 mm) (B6F547IXXWMV-00).

Wearstrip Dimensions

		A (Nominal)	
		1/8 in (3.2 mm)	3/16 in (4.7 mm)
Standard Edge	1.00 in (25.4 mm)	1.13 in (29 mm)	
Tabbed Edge	1.00 in (25.4 mm)	1.06 in (27 mm)	
Angle	1.00 in (25.4 mm)	1.06 in (27 mm)	
B Center Rail	1.56 in (40 mm)	1.56 in (40 mm)	
S2400 Hold Down Guide	1.03 in (26 mm)	1.09 in (28 mm)	

Pusher Bars

Accumulation tables are most often used in the beverage industry, allowing upstream production machinery to operate continuously and economically in the event that some downstream machinery stops the flow of the product. These tables act as a buffer to absorb the product overflow until the downstream problem is rectified. The principal function of a pusher bar is to move the last few rows of product off the accumulation table, past the dead plate area and onto the primary conveyor lines. Pusher bars rest on the accumulation table, which must use a Raised Rib style belt (Series 100, 400, and 900).

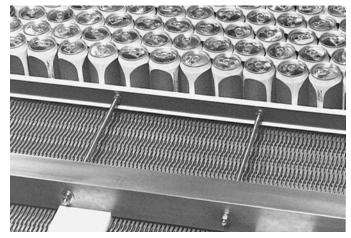


Figure 31: Pusher bar side view

The bar is a 2.5 in (63.5 mm) square stainless or carbon steel shaft which rides in several slotted UHMW guide shoes. The shoes are slotted on the bottom to mesh with the ribs of the belt and keep the bar aligned, perpendicular to the direction of belt travel. The shoes bear the entire weight of the pusher bar, so it is recommended that wearstrips be placed to support the belt directly under the shoes.

The blade of the pusher bar actually does the pushing. It can be specified in 24 in (610 mm) to 120 in (3048 mm) lengths and consists of a rigid steel bar capped with UHMW wearstrip, so as not to mar or damage the product. The blade is set off from the weighted shaft by threaded steel rods, making the amount of offset adjustable to individual needs.

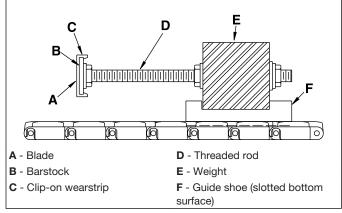


Figure 32: Pusher bar assembly

A dual blade pusher bar is also available for tall or contoured products. The upper blade of this configuration is adjustable up and down and can be extended past or retracted further back from the lower blade.

Adjustment of the pusher bar is dependent upon: 1) placement of the device which limits the pusher bar's forward travel, and 2) dimensions of the product being conveyed. Standard offset is approximately equal to the length of the finger plate to be used: 5.75 in (146 mm) for Series 100, 7.5 in (191 mm) for Series 400 and 6.5 in (165 mm) for Series 900.

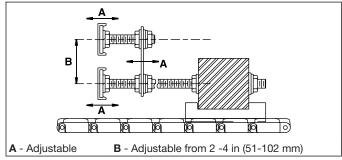


Figure 33: Dual blade pusher bar assembly

Transfer Plates

Intralox offers UHMW transfer plates with operating temperature limits of -100°F (-73°C) to 180°F (82°C).

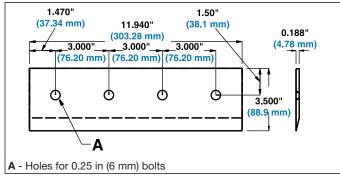
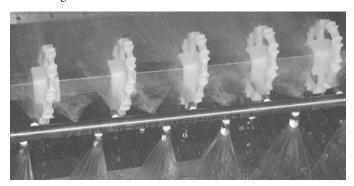



Figure 34: Transfer plates

EZ Clean[™] in Place (CIP) System

Compatible with most conveyors, the EZ CIP system cleans belts quickly, effectively, and consistently while minimizing water usage.

The CIP system features a spray bar optimally located to increase and expedite debris removal and a custom-engineered spray pattern. The spray pattern is designed to provide thorough cleaning of the belt underside, sprockets, and shaft. The system mounts within the conveyor frame behind the conveyor shaft and sprays the belt at three separate locations. Fan nozzles spray through the open belt hinges below and above the shaft as the belt travels around the sprockets. High

impact nozzles spray the belt underside along the belt drive bars to maximize the debris channeling effect built into EZ Clean belts. Cleaning is further optimized when used along with Angled EZ Clean sprockets.

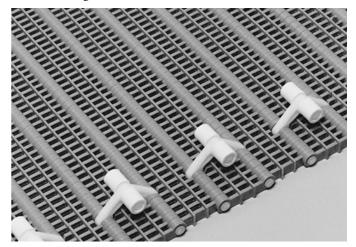
The CIP system can be installed on the drive end or idle end, but the drive end is preferred. The system is made of 303/304 stainless steel, with highly polished surfaces. The minimum water pressure recommended at the intake of the CIP system is 150 PSI (10 bar).

Hold Down Rollers

Hold down roller assemblies can be used in place of hold down shoes or rails on wide elevating conveyors. On typical elevating conveyors, the flights have a notch in the center of the belt so that a hold down rail or shoe can be used to keep the belt on the conveyor frame. Product loss or damage from these shoes is an inevitable side effect.

Standard roller assemblies have a bracket made of acetal, with polypropylene rollers and rods, and are available for the following belt styles:

Series 200 — Flush Grid, Open Grid, Open Hinge, Flat Top, and Perforated Flat Top


Series 400 — Flush Grid, Open Hinge and Flat Top

Series 800 — Flat Top, Perforated Top, Flush Grid, and Mesh Top.

Hold down roller assemblies are built securely into the underside of the belt, held in place by the belt's hinge rods. The rollers ride in tracks that anchor the belt in position as it enters the incline of the conveyor. These assemblies can also be used in place of traditional hold down rails or shoes on the side of the conveyor.

Hold down rollers can be placed as frequently as every other belt row, a minimum of 4 in (102 mm) apart to a recommended maximum of 24 in (610 mm) apart. Normally, 8

in (203 mm) spacing, every fourth row is sufficient. Sprocket size is limited by the rollers protruding from the bottom surface of the belt. In order to keep the rollers from coming into contact with the shaft, when using a 1.5 in (or 40 mm) square shaft, the minimum allowable sprocket pitch diameter is 6.4 in (163 mm). When using a 2.5 in (or 60 mm) shaft, the minimum sprocket pitch diameter allowable is 7.7 in (196 mm). See*Design Guidelines* for more detailed information.

Abrasion Resistance System

Excessive rod and sprocket wear in abrasive applications can cause various undesirable conditions. Aside from the obvious effect of reduced belt life, there can be added difficulties in making repairs. A badly worn rod cannot be removed easily. Often, belt modules are damaged in the process. Worn rods also cause belt pitch to increase, which decreases sprocket engagement and, in turn, increases the wear rate on sprocket teeth. The belt may not run as smoothly as it should under these circumstances.

Intralox has developed stainless steel split sprockets and Abrasion Resistant (AR) hinge rods which enhance the performance of Intralox belts in abrasive or gritty environments. Rigorous testing shows that these AR components significantly outlast standard components and increase belt module life. Abrasive particles are less likely to become embedded in the harder AR material. Thus, the components themselves do not become abrasive surfaces wearing on the belt.

Split Sprockets

Intralox split sprockets are an alternative to molded plastic sprockets for all Series 100, 400, 800, 900, 1100, 400, 800, 900, 1100, and 1200 belts. Split sprockets are constructed from FDA-compliant materials, but are not USDA-FSIS accepted. See the individual shaft and sprocket data pages for detailed information.

The old style, all stainless steel abrasion resistant sprockets, are still available as special order items. Contact Intralox Customer Service for more information.

Figure 35: Split sprockets

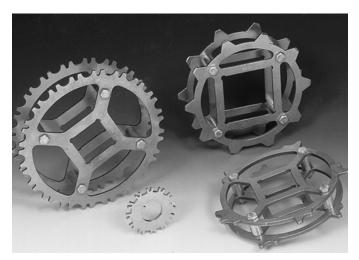


Figure 36: Abrasion resistant (all steel) sprockets

Abrasion Resistance Hinge Rods

Abrasion resistant (AR) rods are stiffer than standard rods, so belt pull capabilities are not sacrificed. AR rods are lighter, less expensive and are more flexible than steel rods. They also provide good chemical resistance, low friction, a wide operating temperature range and are FDA-compliant for direct food contact.

In all belt styles which employ the Intralox snap-lock rod retention system, AR rods are held in place with rodlets installed on both edges of the belt. Rodlets are short, headed rods that are also made of abrasion resistant material.

Figure 37: AR rods and rodlets

Belts that utilize an unheaded rod retention system or belts with Slidelox do not require a head of any type.

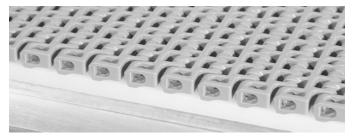
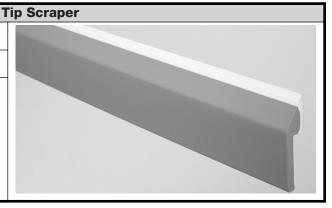


Figure 38: Unheaded rod retention

Figure 39: Slidelox rod retention

Series	Style	Rod Retention System		
100	All styles	Snap-lock rodlets		
200	All styles except Open Hinge	Thermally deformed rod hole		
400	All styles except Open Hinge	Slidelox FG & RR; snap-lock rodlets - Flat Top; unheaded Angled Roller		
800	All styles	Snap-lock rodlets		
850	All styles	Snap-lock rodlets		
900	All styles	Snap-lock rodlets		
1000	All styles	Series 1000 unheaded		
1100	Flush Grid	Series 1100 unheaded		
1200	All styles	Slidelox		
1400	Flat Top	Slidelox		
1500	All styles	Series 1500 unheaded		
1600	All styles	Series 1600 unheaded		
1650	All styles	Series 1600 unheaded		
1700	All styles	Slidelox		
1800	Flat Top	Series 1800 unheaded		
1900	All styles	Shuttleplug		
2200	Flush Grid	Series 2200 unheaded		
2400	Flush Grid	Series 2400 unheaded		
2600	All styles	Series 2600 unheaded		
2700	All styles	Series 2700 unheaded		
2800	All styles	Series 2800 unheaded		
9000	All styles	Series 9000 unheaded		

The Slidelox rod retention system is an unheaded rod retention method. This system uses a Shuttleplug to retain the rods during operation. The Slidelox plug can be easily moved to the side when work on the belt is required.


To remove a rod after a belt has been in service for some time, apply a soapy solution or other lubricant to the belt hinge. This approach helps loosen any grit that has become trapped between the rod and the module.

AR rods can absorb water and expand in length and diameter when used in continuously wet, elevated-temperature environments. If an application requires an AR rod in these conditions, contact Sales Engineering to determine the approximate expansion due to water absorption.

EZ Mount Flex Tip Scraper

				EZ Mount Flex
Available Height		Available Length		Available Materials
in	mm	in	mm	Available Waterials
2.75	2.75 70 72 1830		rigid PVC base with	
2.13	70	' 12	1000	flexible polyurethane tip

- Available in only one size.
- Only cut to length upon receipt.
- Designed for wet or greasy product applications.
- Not for use with dry products or applications.
- FDA compliant.

Section 3: Design Guidelines

After selecting a belt (series, style and material) and accessories, the conveyor frame must be designed. Intralox provides the following dimensional data and guidelines, based on good design principles and practice, for use in designing new conveyor frames or adapting and retrofitting existing ones.

The illustration below identifies most of the components in a conventional, horizontal conveyor. The items shown are only

representative of those in common use. There are many variations of components and design details. The designer must become familiar with those available, to produce the most appropriate and economical conveyor.

Contact Intralox Customer Service to request the Conveyor Belting Installation, Maintenance & Troubleshooting Manual, or to request any additional guidelines.

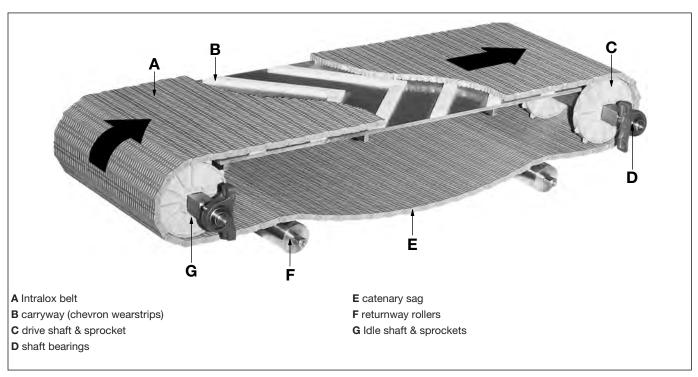


Figure 40: Conventional conveyor components

Basic Conveyor Frame Requirements

Regardless of type or configuration, all conveyors using Intralox belts have some basic dimensional requirements. Specifically, dimensions "A", "B", "C", "D" and "E" in the illustrations and tables below can be implemented in any

DESIGN GUIDELINES

design. Also, the conveyor can allow access to the side of the belt at some point for rod clearance during the installation, tensioning, or removal of the belt.

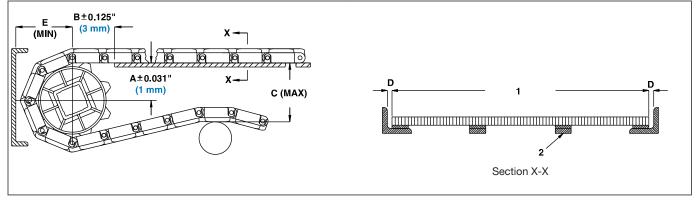
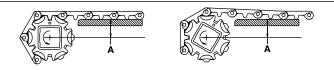


Figure 41: Basic dimensional requirements (roller returnway)

Dimension Definitions

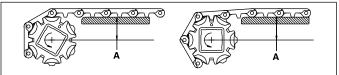

A - The vertical distance between the centerline of the shaft and the top of the carryway.

The belt-to-sprocket engagement and end-off/end-on product transfers are affected by the "A" dimension and the amount of chordal action between the belt and sprockets. Chordal action occurs as each row of modules in a belt rises and falls as it engages the drive sprockets or disengages the idle sprockets. This effect is most pronounced in the large pitch belt/small pitch diameter sprocket combination, such as Series 800 with 4.0 in (102 mm) pitch diameter sprockets.

For small pitch diameter sprockets, the "A" dimension is given as a range to indicate when belts will be horizontal at both high and low points of the chordal action.

For large pitch diameter sprockets/small pitch belt combinations, the effects of chordal action are small and fall within the allowable tolerance. For these sprockets, a range for the "A" dimension is not necessary.

The bottom of the range is determined when the center of the module is at the top of the sprocket. At this point, this leading, engaged module is horizontal (See the following figure.). As this row of modules rotates around the sprocket, the next row starts engaging the sprockets and is lifted above horizontal. It returns to horizontal as this row fully engages the sprockets.


A Vertical distance between shaft centerline and top of carryway

The row of engaging modules is raised above horizontal when the center of the hinge is at the top of the sprocket. The row of engaging modules returns to horizontal as the center of the module passes the center of the sprocket.

Figure 42: Chordal effects - bottom of range

For general applications and applications where end transfer of tip-sensitive product is not critical, use the "A" dimension at the bottom of the range.

The top of the range is determined when the center of the hinge, between two rows of modules, is at the top of the sprocket. At this point, the leading module is horizontal (See the following figure.). As this row of modules engages the sprockets, the row drops below horizontal. It returns to horizontal as the leading edge of the next row starts to engage the sprockets. Avoid this arrangement with Series 800 belts, since the underside module geometry can cause chatter, noise, and wear on the wearstrip or wear plate ends.

A Vertical distance between shaft centerline and top of carryway

The row of engaging modules is horizontal when the center of the hinge is at the top of the sprocket, but goes below horizontal as the center of the module passes the center of the sprocket.

Figure 43: Chordal effects - top of range

The "A" dimension can be set at any point inside the given range. If an "A" dimension is selected, which is between the top and bottom of the range, the belt will both rise above horizontal and drop below horizontal as each row engages the sprockets.

B - The horizontal distance between the centerline of the shaft and the beginning of the carryway. This dimension assumes that a 0.5 in (12.7 mm) thick carryway is used, allowing for a typical 0.25 in (6.4 mm) support and 0.25 in (6.4 mm) wearstrip. The carryway can be extended to within 0.5 in (12.7 mm) of the centerline of the shaft if the supports extend between the sprockets Figure 1.

edge clearance between side frames and the belt must be determined at the operating temperature of the belt. Contact Intralox for precise belt measurements and stock status before designing equipment or ordering a belt. See *Thermal Expansion and Contraction* and *Expansion Due to Water Absorption* sections to calculate the operating width of your belt at temperatures above ambient.

E - The minimum horizontal distance between the centerline of the shaft and any framework.

C - The vertical distance between the top of the carryway and the top of the returnway rails or rollers. This approach provides between 180-degree belt wrap (minimum) and 210-degree belt wrap around the drive sprockets. The listed dimensions provide the minimum 180-degree wrap required by most belts for proper engagement.

Some exceptions are Series 1700, which requires a maximum of 180 degrees of belt wrap, and Series 550, which requires no more or no less than 180 degrees of belt wrap.

D - The clearance between the edges of the belt and the side frame member, 0.25 in (6.4 mm) min. Note that the minimum

Drive Guidelines

Intralox square shafts provide maximum efficiency in driving the belt. The two primary advantages are: 1) the positive transmission of torque to the sprockets without keys and keyways, and 2) allowing lateral movement of sprockets to accommodate the inherent differences in thermal expansion or contraction between plastics and metals.

Shaft Sizes and Materials

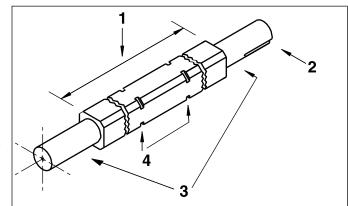
Intralox, LLC USA stocks square shaft materials in carbon steel (C-1018), and stainless steel (303/304 and 316) in the following sizes:

Carbon steel 0.625 in, 1 in, 1.5 in, 2.5 in, 3.5 in 303/304 stainless steel 0.625 in, 1 in, 1.5 in, 2.5 in, 40 mm

and 60 mm

304 HR stainless steel 3.5 in

316 stainless steel 1.5 in and 2.5 in


Intralox, LLC Europe offers square shaft materials in carbon steel (KG-37) and stainless steel (304) in the following sizes:

Carbon steel 25 mm, 65 mm, and 90 mm.

Stainless steel 25 mm, 40 mm, 60 mm, 65 mm, and 90 mm.

Determine the correct shaft size for your application using the calculations in the *Belt Selection Instructions*, or in the *Formulas* section. See *Table 8* for typical shaft sizes and material properties.

Note: If the shaft will be used in a hollow gearbox, contact Intralox Customer Service.

- 1 Square section length [Distance between bearings, less 1/4 in (6 mm)]
- 2 Keyway for driver hub (not required on idle shaft)
- 3 Bearing journals
- 4 Retainer ring grooves

Figure 44: Typical shaft features

Drive Shaft Torque Loading

An important consideration in the selection of shaft sizes is the torque loading that the drive shaft must absorb. The belt's pull, acting through the sprockets, introduces the torsional or twisting load on the drive shaft. Under any given set of conditions, i.e., product loading and frictional resistance, the belt pull will remain constant, but torque on the drive shaft will vary with the size of sprockets chosen. As the sprocket pitch diameter is increased, the torque on the shaft is also increased. Therefore, if a particular shaft size is desired, but the torque to be absorbed exceeds that recommended in *Table 9*, recalculate the torque with the smaller sprocket if there is a smaller diameter sprocket available in your belt's series. To achieve the same belt speed, the rotational speed (RPM) must be proportionally greater with the smaller sprocket.

Power Requirements

The power required to drive the belt can be calculated in the *Belt Selection Instructions*, or from the formulas beginning on *Formulas*. Note: this calculated power does not include the power required to overcome mechanical or other inefficiencies in the system. Conveyor arrangements and power trains can consist of many possible choices. Use the following table to determine the amount of added power needed for your design.

DESIGN GUIDELINES

	Average Mechanical
Machinery Elements	Efficiency Losses
Ordinary sleeve bearings	2% to 5%
Ball bearings	1%
Gear reducers:	
Spur or helical gears	
Single reduction	2%
Double reduction	4%
Triple reduction	5%
Worm gears	
Single reduction	5%
Double reduction	10% to 20%
Roller chains	3% to 5%
V belts	2% to 4%
Hydraulic power systems	Consult the manufacturer.

Determine the total efficiency losses in the components to be used and use the calculated power to determine the required motor power as follows:

For example, if you determine the total efficiency losses in your system amount to 15% and your belt drive power was calculated to be 2.5 horsepower, the required motor horsepower can be found from:

Motor Horsepower =
$$\frac{2.5}{100 - 15}$$
 × 100 = 2.94

Therefore, in this case, the appropriate motor power to drive this system would be 3 horsepower.

Retaining Sprockets

It is necessary to laterally retain only one sprocket on each of the drive and idler shafts. This sprocket will provide the positive tracking necessary to keep the belt running properly between side frames of the conveyor. By allowing the other sprockets to move laterally, thermal expansion differences between the belt and frame are easily accommodated. By convention, Intralox recommends the sprocket next to or on the belt's centerline be retained using retainer rings on both sides of the sprocket. When only two sprockets are used, retain the sprockets on the drive journal side of the conveyor. Sometimes, the "center" sprocket will be slightly offset from the centerline of the belt. Ensure the locked sprockets on the idle and drive shaft are aligned on the shafts. If a radius belt Standard Edge or Tabbed Edge wearstrip is used to contain the Series 2200 belt up to the sprockets, it is not recommended that any sprockets be retained on the shaft. In this case, the wearstrip is used to maintain the belt's lateral position.

Intermediate Bearings

On wide belt systems or those under heavy tension loads, one or more additional bearings can be needed. The additional bearings support the center of the drive and idler shafts to reduce deflection to acceptable levels. Excessive drive shaft deflection causes improper belt-to-tooth engagement, a condition which must be avoided.

When intermediate bearings are considered, the shaft deflection formulas are different from the one which applies to shafts supported by only two bearings. With a third bearing, located in the center of the shaft, the deflection formula (see *Deflections with Intermediate Bearings*) is straightforward and easy to apply.

$$\mathbf{D}_3 = \frac{1}{185} \times \frac{\frac{W}{2} \times L_S^3}{E \times I}$$

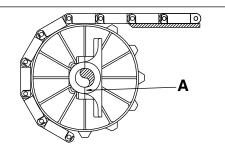
$$= \frac{w \times L_S^3}{370 \times E \times I}$$

Where: \mathbf{D} = Deflection, in (mm)

w = Total shaft load, lb (kg)

 L_S = Shaft length between bearings, in (mm)

 \mathbf{E} = Modulus of Elasticity, lb/in² (kg/mm²)


 $I = Moment of Inertia, in^4 (mm^4)$

When the third bearing is placed off-center, or when more than three bearings are used, the analysis is so complicated that convenient general formulas for deflection cannot be given. A simpler approach is to allow the designer to determine a safe maximum span length, using the charts in Section 4. After calculating the total shaft load, the maximum span for available shaft sizes and materials is easily determined using *Table 12*. Use tables 12A and 12B for conventional conveyors using two bearings and three or more bearings. Use tables 12C and 12D for corresponding curves for bi-directional and pusher conveyors.

Intermediate bearings usually are split journal bearings. Mount these bearings on the conveyor frame, with the split of the bearing housing perpendicular to the direction of the belt travel. (Note: if the split is parallel with the belt travel, its load capacity is reduced significantly.) In cases requiring intermediate bearings, it is prudent to utilize sprockets with the largest practical diameter because of the rather large housing dimensions. Otherwise, a bearing modification can be needed to allow it to fit the limited space available.

intralox^{*}

DESIGN GUIDELINES

A - Split in bearing housing must be perpendicular to the direction of belt pull.

Figure 45: Intermediate bearings recommended mounting arrangement

Rollers as Idle Shafts and Sprocket Replacements

In many applications, idle shafts and their sprockets may be replaced by rollers, supported by stub shafts to account for roller deflection. These pipe rollers can be considerably stiffer than a comparable length of solid, square shafting. For example, a 4 in (102 mm) — Schedule 40 pipe and a 6 in (152 mm) — Schedule 40 pipe have more than twice the stiffness of 2.5 in (63.5 mm) and 3.5 in (88.9 mm) square steel shafts,

respectively. Therefore, in cases where loads are high and the belt is wide, the use of rollers such as these may eliminate the need for intermediate bearings to reduce shaft deflection to acceptable levels. Flanging or spooling of the ends of the rollers to retain the belt laterally is necessary in some cases. Scroll idlers can also be used in place of idle sprockets. See *Scroll Idlers*. Scroll idlers are used to help keep the returnway clean and free of debris.

Soft-Starting Motors and Fluid Couplings

Rapid starting of high-speed or loaded conveyors is detrimental to good belt and sprocket life. RApid starting also causes adverse effects on the entire drive train. When the motor power exceeds 1/4 horsepower per foot of belt width (612 watts per meter), Intralox strongly recommends the use of soft-starting electric motors, variable-frequency drives (VFDs), or one of the several fluid couplings (wet or dry) presently available. These devices are beneficial for all components, since they allow the driven conveyor to accelerate gradually (ramp up and ramp down) to operating speeds.

Belt Carryways

Intralox belting can be supported in the load-bearing part of travel by carryways of various arrangements. Since their primary purposes are to provide a lower friction running surface and reduce wear on both belt and frame, give careful consideration to this part of the design.

The carryway belt contact surfaces can be metal, usually cold-rolled finished carbon or stainless steel, or one of the commonly used plastics available from Intralox. For frictional characteristics of each material, see the belt data pages in *Product Line*, or the coefficients of startup friction and running friction in *Table 2* and *Table 3*. For a description of the plastic wearstrips available from Intralox, see *Wearstrip Types and Sizes*).

Solid Plate Carryways

Solid plate carryways are continuous sheets of metal, UHMW, or HDPE over which the belt slides. They extend the full width of the belt and almost the entire length between idler and drive sprockets. The plates can be perforated with slots or holes to allow for drainage and the passage of foreign material. In heavily loaded applications, this type of carryway surface is considered a good choice because of the continuous support it provides to the belt. Contact the Intralox Technical Support Group for material recommendations.

Wearstrip Carryways

All wearstrips are available in Ultra High Molecular Weight (UHMW) Polyethylene. Certain styles are also available in High Density Polyethylene (HDPE) and Molybdenum-filled nylon (Nylatron).

Wearstrip Types and Sizes

Intralox can provide wearstrips of three different types:

- Standard flat wearstrips are relatively thick, narrow, flat bars of UHMW, HDPE, or Nylatron. UHMW and HDPE flat wearstrips are available in 0.25 in (6.4 mm) thick × 1.25 in (31.8 mm) wide × 10 ft. (3 m) lengths. Molybdenum-filled nylon (Nylatron) flat wearstrips are available in 0.125 in (3.2 mm) thick × 1.25 in (31.8 mm) wide × 8.5 ft. (2.6 m) lengths. The strips are applied directly to the frame and attached with plastic bolts and nuts in slotted holes. This approach allows the strips to expand and contract freely with temperature changes.
- Flat finger-joint wearstrips have a notched-end design that provides an overlapping section for continuous belt support without sharp edges. The 0.25 in (6.4 mm) thick wearstrips are fastened in short lengths at the leading end only, with a 0.375 in (9.5 mm) gap, to provide freedom for elongation caused by temperature changes. They are available in UHMW and HDPE.
- Angle and clip-on wearstrips normally are used in applications where belt edge protection is needed or lateral transfer is required. They are available in lengths of 10 ft. (3 m) in UHMW. In addition to the standard angle wearstrip, several specialty clip-on or snap-on strips are available. These strips attach to the frame without the need of fasteners. See *Wearstrips* for more information on available wearstrips.

Wearstrip Arrangements

• Straight, parallel runners are supports that consist of strips, either metal or plastic, placed on the frame parallel with the belt travel. While relatively inexpensive to install, their disadvantage is that belt wear is confined to the narrow areas in contact with the strips. This arrangement is recommended, therefore, in low-load applications only.

• By placing the strips in an overlapping "V" or Chevron array, the underside of the belt is supported across its full width as it moves along the carryway. Thus the wear is distributed evenly. The angled surfaces can be effective in removing gritty or abrasive material from the underside of the belt. A minimum 0.4 in (10.2 mm) gap is recommended between the points of the wearstrip to reduce debris buildup. This arrangement is also good for heavily loaded applications. By reducing the spacing between adjacent chevrons, the bearing load on the strips and the unsupported belt span is decreased.

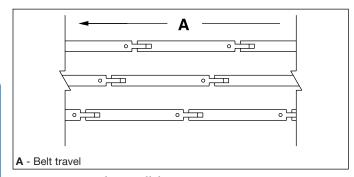


Figure 46: Straight, parallel wearstrip arrangement

Standard flat wearstrips can be modified to form the Chevron array.

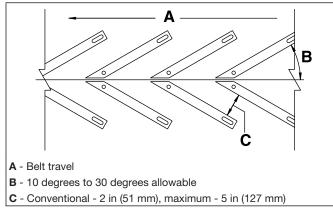


Figure 47: Chevron wearstrip arrangement

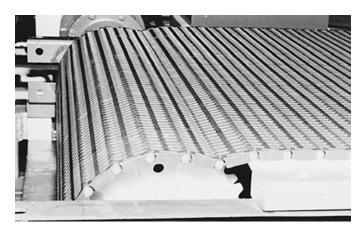


Figure 48: Buckling belt rows

Anti-Sag Carryway Wearstrip Configuration

Under certain conditions, belts will require more carryway support near the sprockets. This is due to the belt tension not being great enough to support product between the end of the wearstrip support and the beginning of the sprocket support. Without adequate support, the belt can buckle See Wearstrip *Arrangements.* This buckling can be eliminated by extending the wearstrip supports, between the sprockets, to within 0.5 in (12.7 mm) of the shaft centerline (See the following figure.).

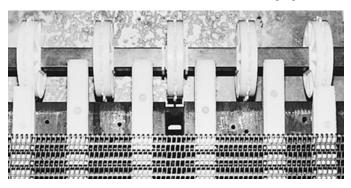


Figure 49: Anti-sag configuration

Belts with a pitch of 1.07 in (27.18 mm) or smaller can need more support, with no more than 2 in (51 mm) of unsupported span. To prevent the belt from sagging or bowing under weight, place the wearstrips so the unsupported spans between the strips, in parallel or chevron array, do not exceed 2 in (50.8 mm). The unsupported span of 2 in (50.8 mm) is measured perpendicular to the support structure (Figure 1), regardless of the angle of the support to the direction of belt travel.

Wearstrip Design Considerations

Temperature limits

UHMW flat and angle wearstrips are recommended to 160 °F (71 °C). HDPE is recommended to 140 °F (60 °C); Molybdenum-filled nylon (Nylatron) up to 250 °F (121 °C).

Thermal expansion and contraction

Installation of Intralox flat and angle wearstrips should allow for thermal expansion and contraction. See Thermal Expansion and Contraction, for Coefficients of Expansion. At operating temperatures of 100 °F (38 °C) or less, it is sufficient to bevelcut the opposing ends of strips at an angle of 30° from the horizontal and provide a clearance gap of 0.30 in (7.6 mm). At temperatures exceeding 100 °F (38 °C), the angle of the cut should be 60°. The clearance should be determined from thermal expansion calculations. It is recommended that wearstrip joining locations be staggered for smooth belt operation.

Chemical resistance

See the polyethylene columns of the *Chemical Resistance* Guide, for information on UHMW and HDPE wearstrips. intralox^{*}

DESIGN GUIDELINES

Returnways and Take-ups

The return side of conventional conveyors using Intralox belts are generally exposed to relatively low tension loads, but nonetheless, are very important in the overall design.

Note: On bi-directional and push-pull conveyors where return side tensions are high, special attention must be paid to this part of the design, see *Special Conveyors*.

Control of Belt Length

One of the principal functions of the returnway is to properly accommodate the change in belt length while operating.

Control of belt length is vital in maintaining sufficient tension after the belt disengages from the drive shaft sprockets. A belt which increases in length can disengage from its drive sprockets if proper design criteria are not followed.

A belt which contracts due to cold temperatures can cause over-tensioning and excessive shaft loads if some surplus belt is not provided. Belts either elongate or contract in operation because of three factors: temperature variations, elongation (strain) under load, and elongation due to break-in and wear.

Temperature Variations

Assuming belts are installed at average ambient conditions, normally about 70°F (21°C), any significant temperature change in operation results in contraction or elongation of the belt. The magnitude of the thermal contraction or expansion is dependent upon the belt material, the difference in temperatures, and the overall belt length. To determine the temperature effects in a particular application, see *Thermal Expansion and Contraction*.

Elongation (Strain) Under Load

All belts elongate if tension is applied. The amount of increase in length depends upon the belt series and style, the belt material, the amount of tension (belt pull) applied, and the operating temperature. Generally, on conventional conveyors where adjusted belt pull (ABP) is about 30% of allowable belt strength (ABS), this load-induced elongation is approximately 1% of the conveyor length. If ABP reaches the ABS, this strain should not exceed 2.5% of the conveyor length.

Elongation Due to Break-In and Wear

New belts usually experience elongation in the first days of operation, as the hinge rods and modules seat themselves. In severe applications, where heavy loads exist or abrasives are present, older belts experience elongation due to wear of the hinge rods and enlargement of the module link rod holes.

Catenary Sag

Due to elongation under load, temperature variations, and pitch elongation, catenary sag is required to ensure proper

back tension and belt storage for Intralox belts with low tension. For applications that will experience a large amount of expansion in length, other take-up arrangements may be required. See *Special Take-up Arrangements* for an explanation of these alternate arrangements.

Back Tension

An adequate amount of returnway tension is needed directly after the drive sprocket for proper belt-to-sprocket engagement. This tension is commonly referred to as *back tension*.

The span length, and the depth of the first catenary sag section directly after the drive sprockets provide this back tension. Back tension is increased as the span is increased, or as the depth is decreased. For this reason, do not allow the depth of this catenary section to exceed the recommendations in the following illustrations. Also avoid allowing the sagged belt to bottom-out on the conveyor frame. This approach greatly reduces the back tension, and can cause sprocket disengagement.

The roller directly after the drive sprocket is commonly referred to as a *snub roller*. Place the snub roller so that the belt is wrapped between 180 degrees and 210 degrees around the drive sprockets. See the "C" dimension in *Dimension Definitions*.

In the design of conventional conveyors, it is seldom necessary to know precisely the amount of sag and tension required for good belt-to-sprocket engagement. In cases when catenary sag is used to accommodate belt length changes, it can be necessary to know the length of the additional or excess belt which hangs between two adjacent supports, and the tension created by that hanging section. For formulas to determine these factors, see *Formulas*. These simplified formulas give close approximations for predicting the results of catenary sag conditions. The actual formulas for catenary curves are more complex. However, in practice, where the span-to-sag ratio is large, these simpler formulas are sufficiently accurate for most applications. For example, with a span-to-sag ratio of 10 to 1, the error in the tension formulas is approximately 2%.

Standard Returnways

The following illustrations provide recommended returnway arrangements which have proven successful in many applications.

Note: On very short conveyors, less than 6 ft (2 m) long, a returnway support usually is unnecessary. The catenary sag between drive and idler sprockets alone is sufficient for good operation if the sag is limited to a maximum of 4 in (102 mm).

- A The amount of catenary sag between each set of return rollers on longer conveyors or between the drive and idle sprockets on short conveyors should be between 1 in (25.4 mm) and 4 in (102 mm).
- The snub roller should be placed 9 in (229 mm) to 18 in (457 mm) from the drive and idle shaft. The snub roller should be placed so that the belt has between 180° and 210° of wrap around the sprocket.
- The returnway rollers should be spaced 36 in (914 mm) to 48 in (1219 mm) apart for all series belts except Series 100 and 400, which should have a 48 in (1219 mm) to 60 in (1524 mm) spacing. This, in combination with A and B, should provide the proper amount of return side tension for good sprocket engagement.
- **D** The minimum roller diameter is 2 in (51 mm) for belts up to 1.07 in (27 mm) pitch and 4 in (102 mm) for larger pitch belts.
- E Slide beds should begin at least 60 in (1524 mm) from the drive sprockets. A combination of return rollers and a slide bed can also be used. The catenary spans should total at least 1/3 of conveyor length.

Figure 50: Short conveyors (less than 6 ft[1.8 m])

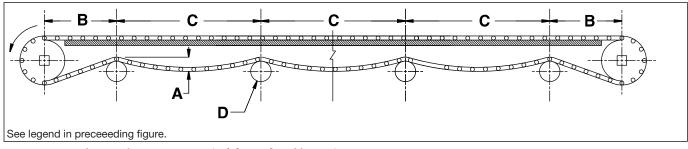


Figure 51: Medium to long conveyors (6 ft [1.8 m] and longer)

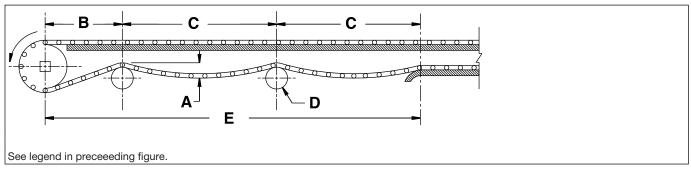


Figure 52: Conveyors with slide beds

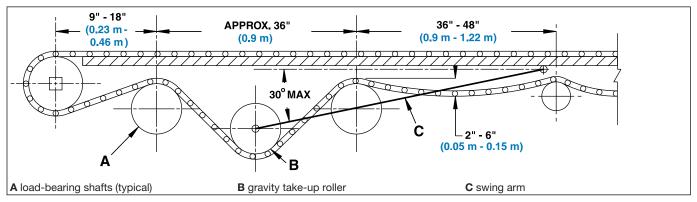
Roller returnways

As the length of the conveyor increases, it is necessary to provide intermediate support rollers in the returnway, but it is most important the belt be unsupported for a significant part of the total length, as shown in the following figures.

Slide Bed Returnways

If a slide bed is used as part of the returnway, begin the slide bed at least 60 in (1524 mm) from the drive sprockets. See Conveyors with Slide Beds for more information.

Special Take-up Arrangements


Catenary sag can be described as a dynamic take-up. In many applications it does not provide adequate tension to prevent sprockets from slipping. In these cases, other types of take-ups are required.

Gravity Style Take-Ups

Gravity style take-ups usually consist of a roller resting on the belt in the returnway. Its weight provides the tension required to maintain proper sprocket engagement. The weight is most effective when placed near the drive shaft end of the returnway. These take-ups are recommended for conventional conveyors which are:

- 1. Over 75 ft (23 m) long, or
- 2. Over 50 ft (15 m) long with belt speeds over 150 ft/min (30 m/min), or
- 3. Exposed to large temperature variations, or
- 4. Operated at speeds over 50 ft/min (15 m/min), and with frequent starts under loads of over 25 lb/ft² (120 kg/m²). For 1.00 in (25.4 mm) pitch belts, a 4 in (102 mm) diameter roller with a weight of 10 lb/ft (15 kg/m) of belt width is

recommended. For 2.00 in (50.8 mm) pitch belts, the recommended specifications are 6 in (152 mm) diameter and 20 lb/ft (30 kg/m) of belt width.

Figure 53: Create back tension on short conveyors

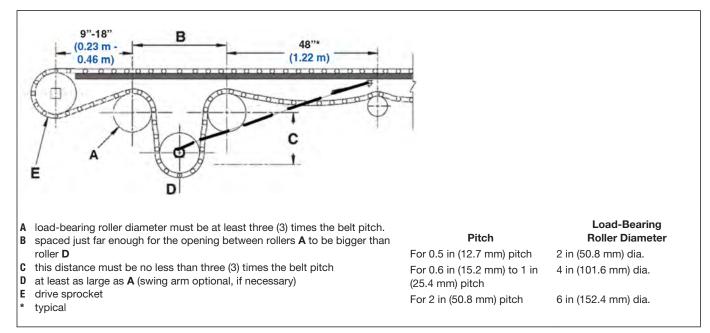


Figure 54: Create back tension and belt storage on long conveyors

Screw style take-ups

Screw style take-ups shift the position of one of the shafts, usually the idler, by using adjustable machine screws. The shaft bearings are placed in horizontal slots in the conveyor frame. The screw style take-ups are used to move the shaft longitudinally, thus changing the length of the conveyor. Screw take-ups can be used only to make minor adjustments to

return the catenary sag to its best position. They cannot be used as primary length control devices.

The disadvantages of screw take-ups are that shafts can be misaligned easily, and the belt can be over tightened, reducing belt and sprocket life as well as increasing shaft deflection.

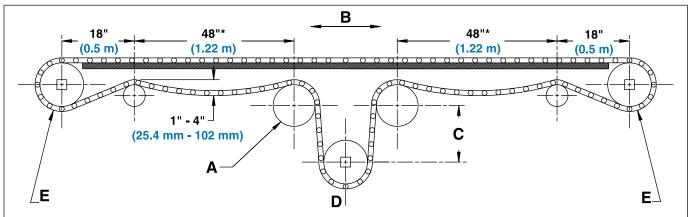
Special Conveyors

Bi-Directional Conveyor

Bi-directional conveyors are usually designed in two basic drive configurations: the pull-pull type and the push-pull type. Both configurations share some common features, but each has certain advantages and disadvantages. Use the following information to help determine the best configuration for a particular application.

Pull-Pull Designs

There are three common variations of the pull-pull configuration: center-drive, two-motor drive, and single-motor and slave-drive.


Center-Drive Design

The center-drive is shown in the following figures. In this design, a reversible drive shaft is placed in the returnway, near the center of the conveyor. Place this drive shaft so that

DESIGN GUIDELINES

adequate belt tension develops on both sides of the returnway with catenary sag sections. Notice that the rollers designated as

"A" in the figure are load-bearing. The shafts and bearings which support them must be so designed.

- A Load-bearing rollers (typical):
- For 0.5 in (12.7 mm) pitch, 2 in (50.8 mm) dia.
- For 0.6 in (15.2 mm) to 1 in (25.4 mm) pitch, 4 in (101.6 mm) dia.
- For 2 in (50.8 mm) pitch, 6 in (152.4 mm) dia.
- For 2.5 in (63.5 mm) pitch, 8 in (203.2 mm) dia.
- B Belt travel
- C This distance must be no less than three (3) times the belt pitch
- D Drive sprockets
- E Rollers can be substituted for sprockets to avoid using intermediate bearings. On conveyors that have a length that is no greater than twice the width, unspooled rollers can be used. On longer conveyors, the rollers must be spooled allowing 3/16 in (5 mm) to 3/8 in (10 mm) clearance between the inside of the flange and the belt edges.

Note: For belts operating at temperatures above ambient, this clearance must exist at operating temperature. *Typical

Figure 55: Center-driven bi-directional conveyor

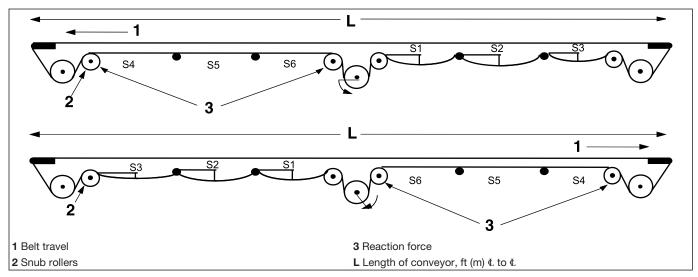


Figure 56: Center drive with nosebars

Center-drive bi-directional conveyors, when designed correctly, afford excellent operating characteristics because sprocket engagement occurs over 180 degrees of rotation. In addition, only one reversing motor is required.

Note: Because belt tension is applied to both the carryway side and returnway side of the idler shafts at opposite ends of the conveyor, it is important to design these shafts for twice the belt tension determined by calculations of the adjusted belt

pull (ABP). Therefore, the shaft deflection calculations and sprocket spacing determination must be based on two times the ABP. Because of these larger shaft loads, it can be necessary to use very large shafts, or to use rollers in lieu of idle sprockets and shafts on these designs.

intralox^{*}

DESIGN GUIDELINES

Two-Motor Drive Design

The two-motor drive design has the advantage of relatively low returnway belt tension, but requires additional hardware (an additional motor and slip clutches) and electrical control components. Despite the additional equipment requirements, on extremely large conveyors with heavy loads, this approach is often the most practical drive system.

Single-Motor and Slave-Drive Design

Another low-tension option is the single-motor (reversible) design. This design employs a roller chain, alternately driving either of two chain sprockets on the conveyor shafts. The additional hardware required does increase cost. Because of the length of roller chain involved, this drive system is usually limited to short conveyors.

Push-Pull Designs

Push-pull designs require special attention to returnway tension, shaft deflection, and sprocket spacing. When the drive

shaft pulls the load towards itself, the conveyor acts like other conventional units. If the direction of belt travel is reversed, the drive shaft pushes the loaded belt. Sprocket slipping or jumping can occur in this situation, if the return-side tension is not greater than the carryway tension. Excess belt can buckle upwards in the carryway and interfere with product handling. It is important to design a push-pull bi-directional conveyor with the required return-side belt tension. Experience has shown this tension must be about 120% of the carryway-side ABP. To determine the carryway-side ABP, see *Belt Selection Instructions*, or *Formulas*. After the carryway side ABP is identified, use the following formula to calculate the required returnway tension.

Required returnway tension = $1.2 \times ABP$

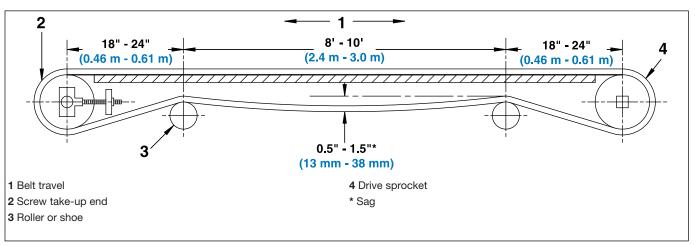


Figure 57: Push-pull bi-directional conveyor

Effect on shaft deflection and sprocket spacing

Since both drive and idler shafts will experience a tension load as the belt approaches and leaves the sprockets, the total shaft loading is more than twice that of a conventional unidirectional conveyor. Therefore, when calculating the shaft deflection, it is most important to increase the Total Running Shaft Load for the added belt tension. The corrected Adjusted Belt Pull can be found from:

Corrected ABP = $2.2 \times ABP$

Use this value in calculating the Total Shaft Load and Shaft Deflection. Formulas for these can be found in the *Belt Selection Instructions*, or the *Formulas*. Because the belt is tensioned on both sides of the sprockets, a greater shaft deflection of about 0.22 in (5.6 mm) is tolerable for these conveyors.

The Corrected ABP can also be used in determining the proper spacing of shaft sprockets. See the Drive Shaft Sprocket Spacing chart in *Product Line* for the belt being considered. Remember that both shafts will be considered as drive shafts for deflection and sprocket spacing calculations.

The power and torque to drive the push-pull unit is not affected by the returnway tension, however, the greater shaft loading does affect the loads on bearings. The designer is therefore cautioned to allow for this additional load in the selection of the shaft bearings.

Elevating Conveyors

Elevating conveyors are similar to horizontal units with several design differences required for good operation. First, the upper shaft is strongly recommended as the drive shaft. The extreme difficulty of "pushing" product up an incline precludes this approach as a viable alternative. Second, as the angle of incline increases, the effectiveness of catenary sag as a method of length control decreases. Intralox recommends using some mechanical form (screw or spring) of take-up on the lower or idler shaft.

Elevators almost always involve the use of flights and sideguards which present special requirements in the design. For example, shoes or slide beds on the return side must be designed so these flights or sideguards do not interfere with the smooth operation of the conveyor. See *General Notes* for more information.

DESIGN GUIDELINES

General Notes

The following general notes apply to all elevating conveyors. See *Variations* for illustrations and additional notes about specific variations.

General Notes on Elevating Conveyors

- A If sprockets are used at intermediate points, the center sprockets are NOT retained. If rollers or shoes are used, a 3 in (76 mm) minimum radius is required for 1.00 in (25.4 mm) pitch belts; a 5 in (127 mm) minimum radius for 2.00 in (50.8 mm) pitch belts.
- B To minimize wear, ensure the hold down shoe radius is as large as the application allows. The minimum radius is 6 in (152 mm).
- C Internal roller or shoe must have a minimum diameter of 3 in (76 mm).
- D Consider a drum or scroll on the idle end if product or foreign materials are expected to fall between the belt and the sprockets.
- **E** Keep drip pans clear of flights and sideguards between drive sprockets and the first shoe or roller.
- F For proper sprocket engagement, do not allow belt sag to develop between the drive sprocket and the first roller or shoe.

Variations

- Incline conveyor
- Decline conveyor
- Elevating conveyor with belt edge slider return
- Elevating conveyor with wide sideguards and shoe return
- Elevating Conveyor with Shoe Return

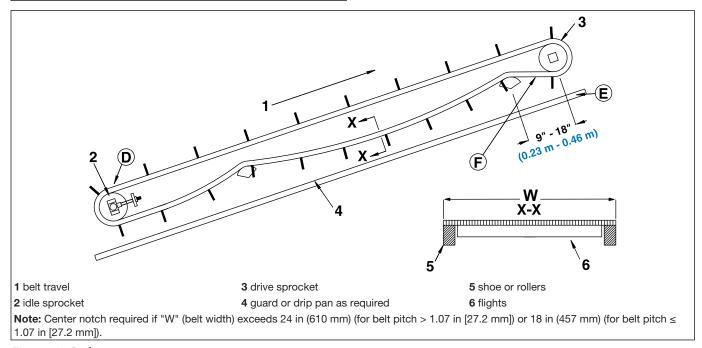


Figure 58: Incline conveyor

DESIGN GUIDELINES

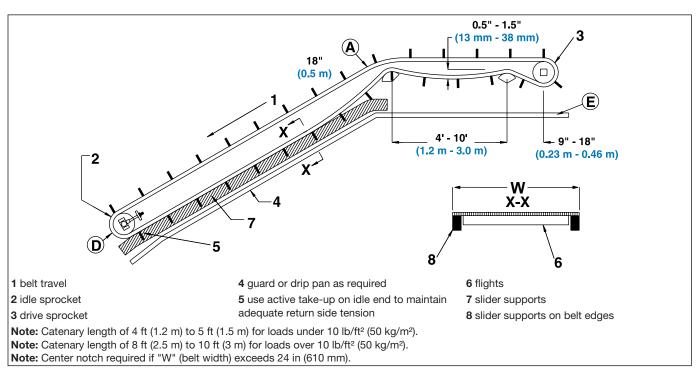


Figure 59: Decline conveyor

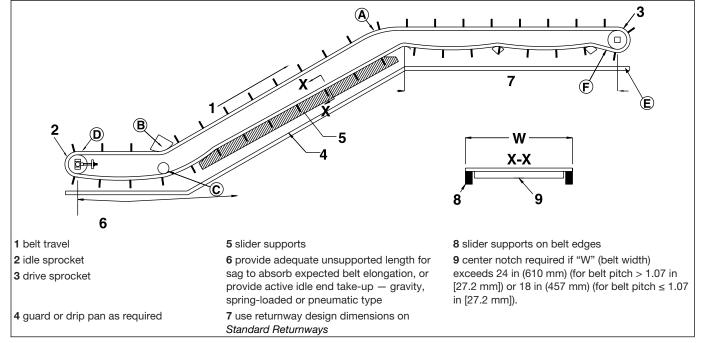


Figure 60: Elevating conveyor with belt edge slider return

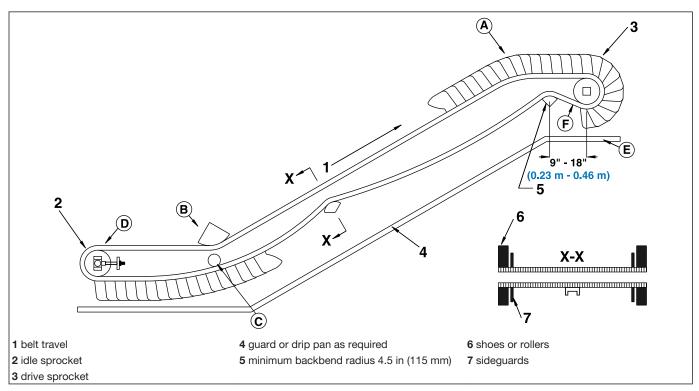
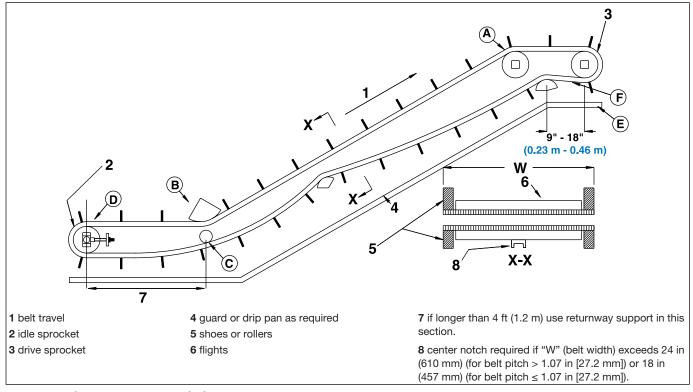



Figure 61: Elevating conveyor with wide sideguards and shoe return

Figure 62: Elevating conveyor with shoe return

Hold Down Rollers

Some elevating conveyors can employ hold down roller assemblies in place of hold down shoes or rollers. These roller

assemblies ride in steel rails on the carryway and returnway side of the conveyor. To minimize wear, ensure that the rail

bend radius is as large as the application allows. Ensure that the minimum bend radius is 12 in (305 mm). The minimum rail thickness is 0.125 in (3.2 mm), and must be at least 0.75 in (19 mm) wide. The minimum bend radius is proportional to the thickness of the carryway rail. A thicker rail requires a larger bend radius. Normally, the roller assemblies are spaced every fourth row along the length of the belt. The tightest spacing possible is every second row. Assembly spacing has no effect on bend radius.

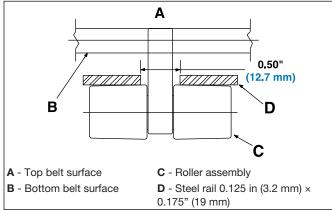


Figure 63: Hold down roller

When large temperature variations are encountered, rails must be placed carefully to accommodate the thermal expansion of the belt. The transverse movement of the roller assemblies can

be calculated by using the Coefficients of Thermal Expansion. See Thermal Expansion and Contraction. The distance of the hold down roller assembly to the belt centerline is used to calculate the movement.

For example:

A 24 in (610 mm) Series 400 Flush Grid polypropylene belt, with hold down rollers indented 4 in (102 mm) from each side, will operate at 100°F (38°C). The distance at ambient temperature, 70°F (21°C), from a hold down roller assembly to the belt centerline is 8 in (203 mm).

$$\Delta = L_1 \times (T2 - T1) \times e$$

$$\Delta = 8 \text{ in} \times (100^{\circ}\text{F} - 70^{\circ}\text{F}) \times 0.0008 \text{ in/ft/}^{\circ}\text{F} \times \frac{1 \text{ ft}}{12 \text{ ir}}$$

 $\Delta = 0.016 \text{ in } (0.41 \text{ mm})$

Where:

L₁ = Distance from hold down roller to belt centerline

T₁ = Ambient temperature

T₂ = Operating temperature

= Thermal expansion coefficient (0.0008 in/ft/°F for polypropylene)

Each hold down roller assembly moves 0.016 in (0.41 mm) when the belt is raised to operating temperature.

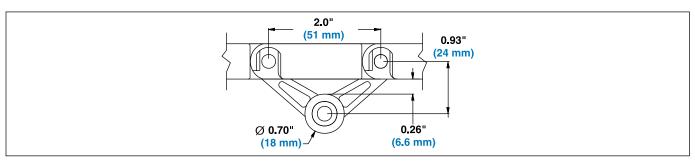


Figure 64: Hold down roller, side view

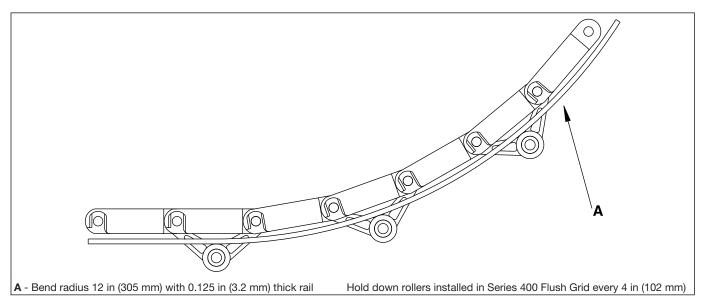


Figure 65: Hold down roller, side view

Buckets for Series 200 belts

Buckets are available for use with Series 200 Open Grid, Flush Grid, Flat Top and Perforated Flat Top belts. The same guidelines that apply to flighted belts generally apply to belts with buckets. The minimum backbend radius of a belt with buckets is 3.5 in (88.9 mm). Rollers and shoes must be sized accordingly.

Sprockets cannot be located behind the bucket gussets. Gussets will interfere with the normal action of the sprockets.

Friction Modules

Several Intralox belt styles incorporate a high friction material to move products (cartons, trays, bags, etc.) on inclines.

Integral Friction Surface Modules

The high friction rubber of Friction Top modules is molded to a polypropylene or polyethylene base. Normal wearstrip, carryway, and sprocket recommendations apply.

Conveyor Design Issues for Friction Modules

The following guidelines apply:

- Design the returnway to eliminate rubbing contact with friction modules. When using return rollers, the minimum roller diameter is 3 in (76 mm). For detailed returnway information, see *Elevating Conveyors*.
- The friction between the product and the belt is deliberately very high. Flow pressures and belt pulls are high in applications where the product is allowed to back up. These situations are not recommended for any friction top belt.
- End-to-end transfers at both the infeed and discharge ends are recommended. Sliding side transfers are ineffective, due to the high friction quality of the friction modules.
- Thermal expansion is controlled by the base material.
- Operating temperature limits are controlled by the limits of both the friction top material and the base material.

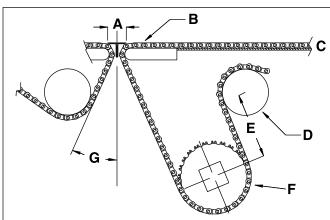
Radius Conveyors

Series 2200 and Series 2400 are designed for radius applications with a turn radius of 2.2, measured from the

inside belt edge, or 1.7 for tight-turning Series 2400. Radius systems have many more design considerations than straight running systems. Some design considerations are discussed in *Product Line*. The data pages for Series 2200 and Series 2400 list requirements for both calculating the belt loads on a radius system and basic design requirements for each belt. Contact Intralox Technical Support for more information.

Tight Transfer Methods

When tight transfers are desired, nosebars or rollers can be used for Series 550, 1000, 1100, 1500, 2300, and 2400. For Series 550 and 2300, contact Intralox Customer Service for Design Guidelines.


Arrangements which allow the nosebars to rotate freely are preferred. Belt tension increases dramatically as it slides around stationary nosebars. The increased belt pull is a function of the friction between the sliding belt and the stationary nosebar, and the angle of wrap between the belt and the nosebar.

Nosebar conveyors often cause an increased amount of belt hinge movement, leading to accelerated hinge wear. Therefore, we recommend using premium materials for both modules and rods. If the application allows this approach, acetal modules and AR-nylon rods are the preferred materials. Contact Intralox Customer Service for recommendations specific to your application.

Select the nosebar material to result in the lowest possible sliding friction between the belt and nosebar. Lower friction reduces belt tension. The amount of belt wrap around the nosebar also affects belt tension. Allow as little wrap as possible. A common nosebar configuration is shown in *Figure 1*. For belts with a pitch less than 0.6 in (15.2 mm), see the *Series 550 Nosebar Conveyor Design Guidelines*.

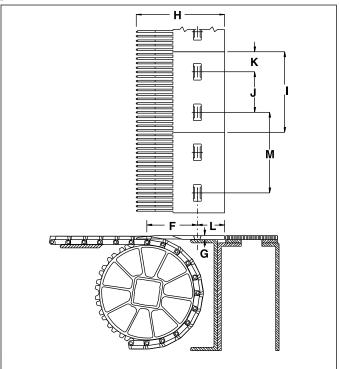
A static nosebar is often exposed to a combination of high contact pressure and high belt speed. Therefore, the nosebar material must be able to deal with this combination of pressure (P) and speed (v). For the combination of relative low speed

and low pressure, a wear-resistant material like oil-filled nylon works well (check PV-value with your supplier). For applications with high contact pressure and/or high belt speed, a nose-roller is recommended (check applied forces and rpm with your supplier).

- A 1 in (25.4 mm) dead plate
- B 0.875 in (22.2 mm) minimum diameter nosebar or roller
- C Use side wearstrip for tracking
- D 3 in (76 mm) minimum diameter suggested
- E 4 in (102 mm) minimum
- F Drive sprocket
- ${f G}$ Typically 20 degrees to 25 degrees. This angle is used to reduce wear on the rods and rod holes. Increasing this angle could increase wear on the rods and rod holes

Figure 66: Common nosebar configuration for belts with pitch \geq 0.6 in (15.2 mm)

Series 1100 Flat Top and Perforated Flat Top Edge Loss


In order to go around a 0.875 in nosebar and achieve self-clearing dead plates, the Series 1100 Flat Top and Perforated Flat Top belts do not have a sealed edge. To accurately size the fan, both airflow through the belt and edge loss of airflow must be considered. This example describes how to size the fan flow required for the Series 1100 Perforated Flat Top belts.

For a 30 in wide belt that is 10 ft long, under a vacuum of 4 in of water, the area under vacuum is 25 sq ft. The length under vacuum is 10 ft. As per the airflow table, at a vacuum of 4 in of water, airflow is 450 SCFM per sq ft through the belt and 110 SCFM per linear foot for the edge. SCFM = (square feet belt under vacuum × airflow through the belt) + (linear feet belt × edge loss). Therefore, total flow is $(25 \times 450) + (10 \times 110) = 12,350$ SCFM.

Transfer Design Guidelines

End-off/End-on Transfers Finger Transfer Plates

Intralox Raised Rib belts and matching finger transfer plates are a highly efficient, low maintenance transfer system currently used in many container handling applications. Correct installation of finger transfer plates is essential for trouble free service and long belt life. Proper installation is particularly important in areas where belting is subjected to high temperature variations and significant thermal expansion. The metal plate support angle used to secure the finger transfer plates to the conveyor frame should be drilled and tapped for 1/4 – 20 screws (metric size M6). Accurate drilling and tapping are important! Finger transfer plates are molded with slots for Intralox shoulder bolts. These bolts prevent the plate from being clamped too tightly to the support angle. The loose fit allows the plates to move laterally and remain properly engaged with the belt ribs during expansion or contraction caused by changes in temperature. The length of the slots in the finger transfer plates limits the amount of expansion and contraction that can be accommodated. It is possible that very wide belts undergoing large temperature variations will exceed the expansion or contraction limits. Contact Intralox Sales Engineering if the values shown in the accompanying table are not large enough for your application.

For an even number of finger transfer plates, locate from the centerline of the belt. Straddle the centerline for an odd number of plates.

The finger transfer plate is to be level with the belt +0.03 in (0.8 mm), -0.00 with hinge rod at top dead center.

Figure 67: Finger transfer plates dimensional requirements

	Dimensional Requirements for Finger Transfer Plate Installation, in (mm)											
						Series 900						
	Series 100	, 2400	Series	Series 400 ¹ Series		Series 1200 ²		nm)	4 in	(102	Series 1900	
									mm) r	etrofit		
F	2.38	(61)	3.50	(89)	3.50	(89)	3.50	(89)	2.38	(61)	3.50	(89)
G	0.19	(5)	0.31	(8)	0.31	(8)	0.25	(6)	0.19	(5)	0.31	(8)
Н	5.83	(148)	7.25	(184)	7.25	(184)	6.50	(165)	5.83	(148)	6.11	(155)
I	3.96	(101)	5.91	(150)	5.91	(150)	5.92	(150)	3.94	(100)	5.91	(150)
J	2.50	(64)	3.00	(76)	3.00	(76)	3.00	(76)	2.18	(55)	3.00	(76)
K	0.74	(19)	1.45	(37)	1.45	(37)	1.45	(37)	0.90	(23)	1.45	(37)
L	2.00	(51)	2.00	(51)	2.00	(51)	2.00	(51)	2.00	(51)	5.50	(140)
M					Sp	acing					•	
Spacing	Polypropylene	Acetal	Polypropylene	Polyethylene	Polypro	pylene	Polypropylene	Acetal	Ace	etal	Endura	lox™
at					Comp	osite					Polypro	pylene
Ambient	3.979	3.976	5.952	5.933	6.0	00	5.981	5.975	3.9	76	6.0	00
Temp.	(101.1)	(101.0)	(151.2)	(150.7)	(152.4)		(151.9)	(151.8)	(101.0)	(152.4)	

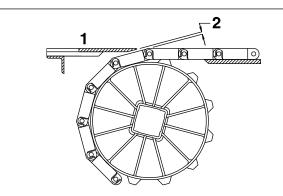
Maximum Belt Width × Temperature						
Belt Material Series 100 Series 400 Series 900						
Inches × °F (mm × °C)						
Polypropylene	3750 (52,900)	15,000 (211,700)	7500 (105,800)			
Polyethylene 2000 (28,200) 8000 (112,900) 4000 (56,400)						
Acetal	10,000 (141,000)					

¹ Dimensions are for two-material, Series 400 Standard Finger Transfer Plates only. See Series 400 Finger Transfer Plate dimensions for more information.

² Dimensions are for two-material, Series 1200 Standard Finger Transfer Plates only. See Series 1200 Finger Transfer Plate dimensions for more information.

DESIGN GUIDELINES

Temperature Effects

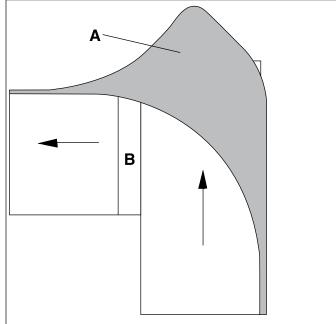

As temperature varies, the width of the belt changes in proportion to the magnitude of the temperature change. To ensure proper finger transfer plate operation, perform the following check:

- Determine the maximum expected change in temperature from ambient, in °F (°C).
- 2. Multiply the maximum temperature change by the belt width, in inches (millimeters).
- 3. If the calculated value is greater than the value obtained from the chart, contact Intralox Sales Engineering before proceeding.

Dead Plates

Where there is a transfer point from a belt without finger transfer plates onto a dead plate, there must be a gap between the surfaces. This gap allows for the chordal action of the belt. As the belt engages the sprockets, chordal action causes the modules to move past a fixed point (the tip of the dead plate) with varying clearances. See the dead plate gap tables at the end of each series in *Product Line* for the gap distance. This is the amount of gap which occurs at the low point of the modules, if the dead plate tip just contacts the high point as the modules pass.

In some installations, it can be desirable to keep the tip of the dead plate in contact with the belt, rather than allow a gap to occur. This can be done by hinging the mounting bracket for the dead plate. This allows the dead plate to move as the modules pass, but results in a small oscillating motion which can present tipping problems for sensitive containers or products.

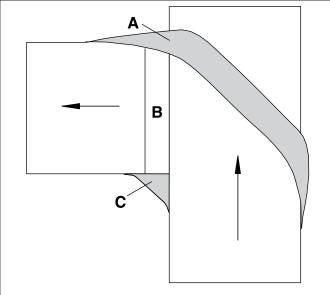

1 top surface of dead plate - typically 0.031 ln (0.8 mm) above the belt surface for product transfer onto the belt, and 0.031 ln (0.8 mm) below the belt surface for product transfer off the belt.

2 dead plate gap

Figure 68: Dead plate gap

90-Degree Container Transfers

For 90-degree transfer of beverage containers from one conveyor to another, full-radius guide rails with dead plates are commonly used. The dead plates span the space between the delivery and the takeaway conveyors. Containers that move along a full-radius guide rail exert high pressure on the rail and on each other. This often results in container damage. See the following figure. Pressure forces peak to the end of the outer curve as the containers move onto the dead plate.

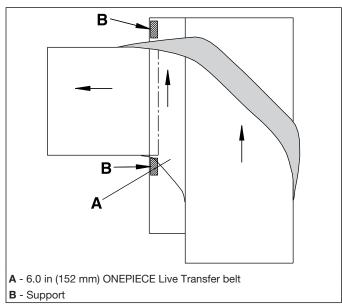


- A High-pressure forces on guide rail from moving containers
- **B** Dead plate

Figure 69: Conventional full-radius guide rail contour with excessive container pressure force buildup

Parabolic Guide Rails

A beverage industry engineer designed the parabolic guide rail for better distribution of the container pressure forces along the outer guide rail. *Figure 1* shows that the forces are more evenly distributed. This approach results in significantly less potential for container damage along the outer rail. However, an excessively large dead area, which strands containers, arises along the inner parabolic guide rail contour.


- A More evenly distributed pressure forces from moving containers
- B Dead plate
- C Dead area

(Showing reduced pressure force buildup and dead area)

Figure 70: Parabolic guide rail contours

Series 900, Series 1100, and Series 1400 ONEPIECE Live **Transfer Belts**

A solution to the dead area problem incorporates a Series 900, Series 1100, or Series 1400 ONEPIECE Live Transfer Belt, either slaved to the delivery conveyor or independently driven. In the following figure, a 6.0 in (152 mm) transfer belt is shown running parallel to, and in the same direction as, the delivery conveyor. This approach eliminates the dead area along the inner parabolic guide rail, as well as the dead plate itself, enabling continuous container movement and eliminating stranded containers through the turn.

Figure 71: Parabolic guide rail contours with 6.0 in (152 mm) ONEPIECE Live Transfer belt

See Product Line for more information on the Series 900, Series 1100, and Series 1400 ONEPIECE Live Transfer belts.

Contact Customer Service Sales Engineering for maximum number of sprockets allowed on Live Transfer belts.

Vacuum Transfer Applications

Series 900 and Series 1100 Perforated Flat Top belts are often used to invert empty containers held against the belt by a vacuum created on the opposite side of the conveyor. As the containers are carried around large diameter drums to the returnway side of the conveyor, they are inverted, then discharged from the belt.

The differential pressure acting to hold the containers to the belt also acts to hold the belt to the carryway. Thus, an additional belt pull is introduced. On small belts with low differential pressures, this added pull can be low and insignificant. On large belts with high differential pressures, the additional pull can be quite high. Under average conditions, the specific added belt pull should not exceed 1.25 lb/ft² (0.24 kg/m²) per inch (mm) water column, vacuum. The designer can also be interested in the amount of airflow through the belt at various differential pressures. Airflow depends on the amount of open area, the differential pressure, the container spacing on the belt, and the air leakage around the perimeter of the belt. For airflow information on different belt series and styles, see Table 11.

Special Design Guidelines

Thermal Expansion and Contraction

With few exceptions, the dimensions of all substances increase as their temperature is increased and contract as their temperature is decreased. Since plastics expand and contract rather significantly, this factor must be considered in the conveyor design whenever operating temperatures differ from ambient temperature.

The designer must allow for changes in both belt length and width to accommodate expansion or contraction. An adequate unsupported span in the returnway must be provided to absorb the increase in belt length. There must be sufficient side clearance, particularly on wide belts, to prevent interference with the side structure. In low temperature applications, the frame must support the belt fully in its cold condition, yet not interfere at ambient temperatures.

Changes in the dimensions of a belt are determined in this manner:

$$\Delta = L1 \times (T2 - T1) \times e$$

where: Δ = change in dimension, in (mm)

> = total belt length/width at initial L, W temperature, ft. (m)

T2 = operating temperature, °F (°C)

T1 = initial temperature, °F (°C)

= Coefficient of Thermal Expansion, е in/ft/°F (mm/m/°C)

Example:

The ambient temperature is 70°F (21°C). The operating temperature is 180°F (82°C). What is the greatest increase in belt length and width of a 60 ft (18.3 m) long by 10 ft (3 m) wide polypropylene belt while in operation?

 $= 60 \times (180 - 70) \times 0.0010$

= 6.6 in (168 mm)

This belt increases in length by 6.6 in (134 mm)—not an insignificant amount. Its width expands by:

 $\mathbf{W} = 10 \times (180 - 70) \times 0.0010$

= 1.1 in (28 mm)

Therefore, this belt would need a method by which approximately 5.5 in (140 mm) of increased belt length could be absorbed on the return side of the conveyor. The width of the conveyor frame must be approximately 1 in (25 mm) wider than its corresponding design under ambient conditions.

DESIGN GUIDELINES

Coefficients of The						
Materials	in/ft/°F	(mm/m/°C)				
Belts						
Acetal, HSEC acetal	0.00072	(0.11)				
Polyethylene						
Series 100 belts	0.0015	(0.23)				
Series 400 Raised Rib belts	0.0015	(0.23)				
All other belts	0.0011	(0.17)				
Polypropylene						
(less than 100°F [38°C])	0.0008	(0.12)				
Polypropylene						
(greater than 100°F [38°C])	0.0010	(0.15)				
Composite polypropylene	0.0004	(0.06)				
Nylon (HR, HHR, AR)	0.0005	(0.07)				
Flame retardant	0.0008	(0.12)				
Hi-Impact	0.0010	(0.156)				
SELM	0.0005	(0.07)				
Wearstrips						
HDPE and UHMW-PE						
-100°F to 86°F (-73°C to 30°C)	0.0009	(0.14)				
86°F to 210°F (30°C to 99°C)	0.0012	(0.18)				
Nylatron	0.0004	(0.06)				
Teflon	0.0008	(0.12)				
Metals						
Aluminum	0.00014	(0.02)				
Steel (carbon and stainless)	0.00007	(0.01)				

Expansion Due to Water Absorption

If nylon belts are used in continuously wet, elevated temperature environments, they have a tendency to absorb water and expand both in length and width. If an application requires a nylon belt in these conditions, contact Intralox Technical Support Group to determine the approximate expansion due to water absorption of the belt.

Slip-Stick Effect

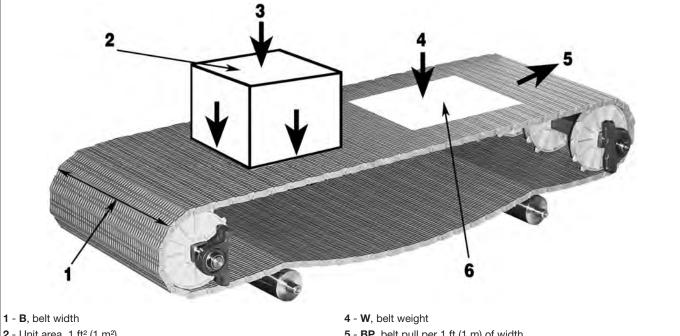
Surging on long conveyors can be caused by a condition known as slip-stick. In this situation, the belt acts like a large

spring or rubber band. The belt will make relatively short, pulsed movements throughout the length of the conveyor. The idle end of the belt may not move until there is enough belt tension to overcome the friction forces between the belt and the carryway. Instead of accelerating smoothly, the belt surges ahead. This in turn causes a brief drop in belt tension, allowing the belt to be slowed by friction. In some instances, the belt will even stop for a moment until the tension develops again Then the process repeats itself. The idle end of the conveyor surges despite the constant speed of rotation of the sprockets at the drive end.

Carryway friction, belt stiffness, belt weight and length play a large role in determining the severity of surging in a conveyor. Stiffness is a reflection of how far a belt will stretch under a given tension. A stiffer belt will develop belt tension with less elongation. A lighter weight belt will not have as much friction force to overcome.

Other factors that can affect surging are chordal action, belt speed, drive system pulsation, return roller diameter and return roller spacing. Chordal action and drive system pulsation can initiate surging. However, return roller diameter and spacing are more critical. Return rollers influence the way in which the belt in the returnway oscillates. Oscillation in the returnway can be transmitted to the carryway side of the belt, causing surging. For more information on roller spacing and diameter, see *Returnways and Take-ups*. Chordal action information is presented on *Chordal Action and Sprocket Selection*.

Section 4: Formulas and Tables


Section 4 provides the appropriate formulas and tables required calculate the values for selecting the proper belt for any application. This section also provides measurement conversion factors for all the units used in the formulas and

tables. A *Chemical Resistance Guide* is provided to determine if the desired belt material will be chemically compatible for the application.

Symbols Used

		Units	of Measure
		U.S.	Metric (SI)
BS	Belt strength rated [70°F (21°C)]	lb/ft of width	kg/m of width
ABS	Allowable belt strength at operating conditions	lb/ft of width	kg/m of width
ABSU	Allowable belt strength utilized	%	%
BP	Belt pull at drive sprocket	lb/ft of width	kg/m of width
ABP	Adjusted belt pull	lb/ft of width	kg/m of width
М	Product loading on belt	lb/ft²	kg/m²
Mp	Backed-up product load	lb/ft²	kg/m²
W	Weight of belt	lb/ft²	kg/m²
¢	Centerline	_	_
L	Length of conveyor, shaft € to shaft €	ft	m
Н	Elevation change of conveyor	ft	m
F	Total friction factor	_	_
F _w	Friction coefficient, wearstrip to belt	_	_
Fp	Friction coefficient, product to belt	_	_
SF	Service factor	_	_
В	Width of belt	ft	m
Q	Weight of shaft	lb/ft	kg/m
W	Total load on shaft	lb	kg
L _s	Length of shaft, between bearings	in	mm
To	Torque on drive shaft	in-lb	kg-mm
PD	Pitch diameter of sprockets	in	mm
V	Speed of belt travel	ft/min	m/min
°F	Degrees, fahrenheit	°F	_
°C	Degrees, celsius	_	°C
T	Temperature factor	_	_
S	Strength factor	_	_
HP	Horsepower	hp	_
P _w	Power, watts	_	Watts
E	Modulus of elasticity (Young's modulus)	lb/in²	kg/mm²
I	Moment of inertia	in ⁴	mm ⁴
D	Deflection of shaft	in	mm
n	Shaft speed of rotation	rpm	rpm
Ø	Diameter	in	mm

Formulas

- 2 Unit area, 1 ft² (1 m²)
- 3 M, product loading
- Figure 72: Primary loads conventional conveyor
- 5 BP, belt pull per 1 ft (1 m) of width
- 6 Unit area, 1 ft2 (1 m2)

Calculating Belt Pull or Tension Load

The tensile strength on operating conveyor belts is produced by the combination of loads imposed by frictional resistance and by moving the product to a different elevation, if applicable.

Friction forces are developed in two ways. First, the weights of the belt and the conveyed product bear on the carryway to create a resistance as the belt is driven. Second, if the product is held stationary while the belt continues to move under it, there is an added resistance between the belt and the product. Each of these friction forces is proportional to a coefficient of friction. Coefficient of friction is dependent upon the materials in question, their surface qualities, the presence or absence of a lubricant, the cleanliness of the surfaces, and other factors. For typical values of coefficients of friction for common conveying applications using Intralox belts, see Table 2. The coefficient of friction between the belt and the carryway wearstrips is designated as F_w. The coefficient between the product being moved and the belt is represented as F_p.

The first step in calculating belt pull (BP), is calculation of the backed-up product load, M_p:

Formula 1: Backed-up Product Load

Percentage of belt area backed-up

$$M_P = M \times F_p \times ($$

Note: If there is no slippage of product on the belt, and no backed-up product, ignore M_p , since it does not apply.

Notice that Table 2 gives two listings of Fw for belts made of polypropylene, one for clean, smooth-running applications and another for abrasive applications. In this case, abrasives are defined as small amounts or low levels of fine grit, dirt, fiber, or glass particles present on the carryway. The designer should be aware that many factors affect friction. Slight variations in conditions can produce wide deviations. Allow for these variations when using friction coefficients in design calculations.

After calculating M_p and finding the friction factor F_w, calculate the belt pull (BP), using this formula:

Formula 2: Belt Pull

$$\mathbf{BP} = [(M + 2W) \times F_{W} + M_{D}] \times L + (M \times H)$$

This equation for belt pull reflects its two components: [(M + 2W) \times F_w + M_p] \times L for the friction load and (M \times H) for the change in elevation, if one exists.

intralox^{*}

FORMULAS AND TABLES

Adjusting the Calculated Belt Pull for Actual Service Conditions

Service conditions can vary greatly. Adjust the belt pull (BP), calculated from Formula 2 to allow for those factors. The adjusted belt pull (ABP) is determined by applying an appropriate service factor (SF).

On bi-directional or pusher conveyors, where the return-side belt tension is high, consider both terminal shafts as drive shafts when determining adjusted belt pull.

Formula 3: Adjusted Belt Pull

 $ABP = BP \times SF$

For pusher conveyors:

 $\mathbf{ABP} = \mathsf{BP} \times \mathsf{SF} \times 2.2$

To determine service factors, see Table 6.

Calculate Allowable Belt Strength (ABS)

Intralox belts have strength ratings, determined at ambient temperature and low speed. The strength of plastics generally decreases as the plastic temperature increases. The wear rate is directly proportional to speed but inversely proportional to conveyor length. Because of these factors, the rated belt strength (BS), must be adjusted according to this formula:

Formula 4: Allowable Belt Strength

 $ABS = BS \times T \times S$

The rated belt strength (BS), and strength factor (S), are provided in the *Product Line* section. If a belt rating is specified for the sprocket material being used and the rating is lower that the belt rating, use the lower rating. For temperature factor (T), see *Table 7: (T) Temperature Factor*. If a center drive is used, determine strength factor (S) by using the following equation:

for S greater than 0.6 S' = 1-2 (1-S)for S less than 0.6 S' = 0.2then, $ABS = BS \times T \times S'$

Determine Maximum Spacing of Drive Shaft Sprockets and Recommended Minimum Number of Shaft Sprockets

To determine the number of sprockets needed, first determine the belt pull in relation to the available strength of the belt. Using the adjusted belt pull and allowable belt strength calculate the allowable belt strength utilized (ABSU) using this formula.

Formula 5: Allowable Belt Strength Utilized

ABSU = $(ABP \div ABS) \times 100\%$

See the *Sprocket Quantity as a Function of Belt Strength Utilized* graph for the appropriate series in the *Product Line*

section. Use the ABSU to find the minimum sprocket spacing in inches (or meters). Determine the number of drive sprockets required for a conveyor by dividing belt width in inches (or meters) by sprocket spacing, then rounding up to the next whole number.

Idle shaft sprockets on conventional conveyors are normally exposed to less tension than drive sprockets and, therefore, can operate with wider spacing. However, this spacing must never exceed 6.0 in (152 mm) for all series except Series 200, where the maximum spacing must never exceed 7.5 in (190 mm). Specific recommendations for the minimum number of idle shaft sprockets can be found in the appropriate sprocket tables for the appropriate belt in the *Product Line* section.

If the calculated ABSU is above 75%, contact Intralox Customer Service to run the *Intralox Engineering Program* and verify your results.

Confirmation of Shaft Strength

Two important functions of the drive shaft must be analyzed before its ability to operate properly can be determined. Those functions are its ability to absorb the bending force of belt pull with an acceptable shaft deflection, and its successful ability to transmit the necessary torque from the driver.

The initial step here is to make a preliminary selection of a shaft size which fits your sprocket of choice. The shaft bends or deflects under the combined loads of the adjusted belt pull (ABP) and its own weight. These forces are assumed to be coplanar and can be combined into a total shaft load (w), determined by:

Formula 6: Total Shaft Load

 $\mathbf{w} = (ABP + Q) \times B$

For shaft weight (Q), see *Table 8*: *Shaft Data*. B-Shaft Data represents the width of the belt.

Shaft Deflection

For shafts supported by two bearings, the deflection (D), can be found from:

Formula 7: Shaft Deflection - 2 Bearings

$$D = \frac{5}{384} \times \frac{w \times L_S^3}{E \times I}$$

For modulus of elasticity (E) and moment of inertia (I) values, see *Table 8*. L_s is the unsupported span of the shaft between bearings.

Maximum Shaft Deflection Recommendations

As drive shafts bend or deflect under heavy loads, the longitudinal distance between the drive shaft and the idler shaft is less at the belt centerline than at the edges. This difference causes an uneven distribution of tension in the belt, with the greatest being absorbed at the edges. Since the tension distribution is uneven, the load absorbed by the sprocket teeth is not equal. Intralox has determined that satisfactory performance can be obtained if shaft deflections do not exceed certain limits. These limits are:

Conventional, Uni-Directional Conveyors

Maximum shaft deflection = 0.10 in (2.5 mm)

Bi-Directional or Pusher Conveyors

Maximum shaft deflection = 0.22 in (5.6 mm)

If the preliminary shaft selection results in excessive deflection, it is necessary to pick a larger shaft size, a stronger material, or use intermediate bearings to reduce shaft span.

Deflections with Intermediate Bearings

With a third bearing located in the center of the shaft, the deflection formula to be used is:

Formula 8: Shaft Deflection - 3 Bearings

$$\mathbf{D_3} = \frac{1}{185} \times \frac{\frac{\mathsf{w}}{2} \times \mathsf{L_S}^3}{\mathsf{E} \times \mathsf{I}}$$

$$\mathbf{D_3} = \frac{\mathbf{W} \times \mathbf{L_S}^3}{370 \times \mathbf{E} \times \mathbf{I}}$$

In this case, L_s is the span between the center bearing and an outer bearing.

In applications with very wide belts under heavy loads, it can be necessary to use more than one intermediate bearing to reduce deflections to an acceptable level. Since the formulas for deflections in these cases become complex and unwieldy, Intralox provides a safe, maximum span length for the total shaft load (w) in *Table 12: Maximum Drive Shaft Span Length*.

When using these tables, remember to first calculate the total shaft load (w), using the formula provided in *Confirmation of Shaft Strength*.

In applications with bi-directional conveyors or pusher conveyors, also correct the adjusted belt pull (ABP), for the increased tension required. For the corrected ABP, see Formula 5.

Drive Shaft Torque

To overcome the resistance of moving the belt and the product, the drive shaft must be strong enough to transmit the twisting or rotating forces imposed by the drive motor. The torsional action introduces shearing stresses on the shaft. The shearing stresses are usually most critical in the bearing journals next to the driver.

Rather than require shearing stress calculations, use *Table 9*to quickly determine the maximum recommended drive shaft torque for a given shaft journal diameter and shaft material. For example, assume your preliminary shaft selection is 2.5 in (63.5 mm) and made of carbon steel. Since the maximum journal diameter is 2.5 in (63.5 mm), the maximum recommended torque for this size is 22,500 in-lb (259,000 kg-mm)

The actual torque (T_o), to be transmitted can be calculated from:

Formula 9: Torque, Drive Shaft

$$T_o = ABP \times B \times \frac{P.D.}{2}$$

where PD represents the sprocket pitch diameter, in (mm)

Compare the actual torque with the maximum recommended torque to determine if this journal size is adequate. If not, try the next larger shaft size or a stronger material. If these options are not possible, try a smaller sprocket size. Often, the actual torque is considerably lower than the maximum recommended. If so, reducing the journal diameter to an acceptable smaller size can reduce the cost of bearings required.

ECTION 4

intralox^{*}

FORMULAS AND TABLES

Determining the Power Needed to Drive the Belt

The power required to overcome the resistance of moving the belt and product can be calculated from the following formulas:

Formula 10: Horsepower - U.S. Units

Horsepower, $HP = \frac{ABP \times B \times V}{ABP \times B \times V}$

Horsepower, $HP = \frac{}{33,000}$

where: ABP = Adjusted belt pull, lb/ft of belt width

B = Belt width, ftV = Belt speed, ft/min

Another version using different factors is:

Formula 11: Horsepower - U.S. Units

HORSEPOWER,

T_o × V 16,500 × P.D.

where: $T_0 = \text{Torque}$, in-lb

P.D. = Pitch diameter, in
V = Belt speed, ft/min

Formula 12: Power - Metric Units

 $ABP \times B \times V$

POWER, **WATTS** = 6.12

ABP = Adjusted belt pull, kg/m of belt width

B = Belt width, mV = Belt speed, m/min

and another version is:

where:

Formula 13: Power - Metric Units

T_o × \

POWER, **WATTS** = $3.06 \times P.D.$

where: $T_o = \text{Torque}, \text{kg-mm}$

P.D. = Pitch diameter, mmV = Belt Speed, m/min

If torque is known in Newton-millimeters, the equation for power is:

Formula 14: Power - SI Units

POWER, **WATTS** =

30 × P.D.

where:

 T_o = Torque, N-mm

Determining Drive Motor Power Requirements

The power calculated to drive the belt does not include the power to overcome the friction in gears, bearings, chains, and other mechanical parts of the system. See the *Design Guidelines* section for a list of component efficiency losses in common use, then increase the belt drive power accordingly.

Thermal Expansion or Contraction of Materials

As materials experience increases or decreases in temperature, their dimensions increase or decrease. Belts that are installed at one temperature but operate at another, or that pass through different temperatures in the operating circuit, expand or contract accordingly. Since plastics have relatively high rates of expansion and contraction, it is necessary to consider this characteristic if significant temperature changes are expected. Use the following formula to determine changes in the length, width, or thickness of a material.

Formula 15: Thermal Expansion or Contraction

 $\Delta = L_1 \times (T_2 - T_1) \times e$

where:

= change in dimension, in (mm)

 L_1 = dimension at initial temperature, ft (m)

 T_2 = operating temperature, °F (°C)

T₁ = initial temperature, °F (°C)

e = coefficient of thermal expansion, in/ft/°F (mm/m/°C)

For coefficients of thermal expansion of various materials, see *Thermal Expansion and Contraction*.

Catenary Sag

A belt hanging between two supports under the influence of gravity assumes the shape of a curve called a *catenary*. The specific dimensions of this curve depend upon the distance between supports, the length of hanging belt, and the belt weight. Usually, the actual shape of this curve is not important, but the conveyor designer is interested in two things: the excess belt required and the tension created by the sagging belt.

Note: For more information about catenary sag, see *Returnways and Take-ups*

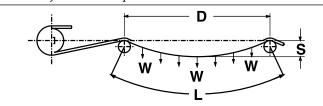


Figure 73: Catenary sag

The excess belt (X), or the difference between L and D in the preceding figure is found from:

Formula 16: Excess Belt - Catenary Sag

$$\mathbf{X} = \frac{2.66 \times S^2}{D}$$

where: X = excess belt, ft (m)

s = sag, ft (m)

D = distance between supports, ft (m)

The tension (T) created by a catenary section of belt is found from:

Formula 17: Tension - Catenary Sag

U.S. Units

$$T = \frac{d^2 \times W}{96 \times s}$$

where: T = tension, lb/ft of belt width

s = sag, in

d = distance between supports, in

W = belt weight, lb/ft².

Metric Units

$$T = \frac{d^2 \times W}{8000 \times s}$$

where: T = tension, kg/m of belt width

s = sag, mm

d = distance between supports, mm

W = belt weight, kg/m²

Note: Radius belt formulas are provided in the *Flat-Turn Program for Radius Applications* program. Contact Intralox Customer Service for more information.

Sample Problems

Steel Can Handling Example

Conditions (in Metric Units)

A beverage handler proposes to use Series 400 Raised Rib polypropylene belts to carry steel cans, weighing 122 kg per square meter, on a conveyor that is 18.3 m long and 1.2 m wide. The belt will run wet on UHMW wearstrips at a speed of 6 m per minute. Frequent starts under load are expected and the steel cans will accumulate a total of 15.2 m. The operating temperature is to be 82°C. A 12-tooth, 198-mm pitch diameter is preferred. Carbon steel shafts are acceptable.

Step 1: Calculate Backed-Up Product Load (M_P) — Formula 1

$$\mathbf{M_p} = \mathbf{M} \times \mathbf{F_p} \times \text{Percentage of belt area backed-up}$$

$$(\frac{\phantom{\mathbf{M_p}}}{100})$$

The coefficient of friction (F_w) between the belt and the UHMW wearstrips is determined from *Table 2* to be 0.11. The coefficient of friction (F_p) between the steel cans and the belt is found from *Table 3* to be 0.26.

Since the steel cans will be backed-up 15.2 m, the percentage of belt area backed-up is

Then the backed-up product load, M_p, is:

$$M_p = 122 \times 0.26 \times (\frac{83.1}{100})$$

 $M_p = 26.4 \text{ kg/m}^2$

Step 2: Calculate Belt Pull (BP) - Formula 2

 $\mathbf{BP} = [(M + 2W) \times F_w + M_p] \times L + (M \times H)$

 $\mathbf{M} = \text{Product loading } (122 \text{ kg/m}^2)$

 $\mathbf{W} = \text{Belt weight } (9.52 \text{ kg/m}^2)$

 \mathbf{L} = Conveyor length (18.3 m)

 $\mathbf{M_p}$ = Backed-up product load (26.4 kg/m²)

H = Elevation change (zero)

Note: Since there is no elevation change, disregard the factor M x H in the formula.

Therefore:

BP =
$$[(122 + (2 \times 9.52)) \times 0.11 + 26.4] \times 18.3$$

BP = 767 kg/m of belt width

Step 3: Calculate Adjusted Belt Pull (ABP) — Formula 3

$$\mathbf{ABP} = \mathrm{BP} \times \mathrm{SF}$$

The service factor (SF), is determined from *Table 6* to be 1.2.

hen:

ABP = 767×1.2

ABP = 920 kg/m of belt width

Step 4: Calculate Allowable Belt Strength (ABS) — Formula 4

 $ABS = BS \times T \times S$

BS = Rated belt strength (see *Table 4*)

T = 0.98 (see Table 7)

S = 1.0

ABS = $2200 \times 0.98 \times 1.0$

ABS = 2156 kg/m of width

Therefore, since ABS exceeds ABP, Series 900 Raised Rib in acetal is a suitable choice.

Step 5: Determine Maximum Spacing of Drive Shaft Sprockets

ABSU = $(ABP \div ABS) \times 100\%$

ABSU = $(920 \div 1,714) \times 100\%$

ABSU = 54%

From the sprocket spacing chart in the *Series 400* product line, the maximum sprocket spacing is about 70 mm.

Step 6: Determine Drive Shaft Deflection

Since this belt is fairly wide, first try a 60-mm square shaft. Use the following formula to calculate the total shaft load (w):

$$\mathbf{w} = (ABP + Q) \times B$$
 (Formula 6)

From *Table 8*, find the shaft weight (Q) to be 29.11 kg/m of length. Then:

$$\mathbf{w} = (920 + 29.11) \times 1.2$$

w = 1,139 kg

For shaft deflection, assume first the shaft is to be supported by two bearings. Therefore, the deflection (D), is found from:

$$\mathbf{D} = \frac{5}{384} \times \frac{\mathbf{W} \times \mathbf{L_S}^3}{\mathbf{E} \times \mathbf{I}}$$
 (Formula 7)

Since the belt is to be 1.2 m or 1200 mm wide, assume the unsupported length of shaft (L_s), is 1320 mm, and from *Table 8*, the modulus of elasticity (E), and the moment of inertia (I), are found to be 21,100 kg/mm² and 1,080,000 mm⁴, respectively. Then:

$$\mathbf{D} = \frac{5}{384} \times \frac{1139 \times 1320^{3}}{21,000 \times 1,080,000}$$
$$\mathbf{D} = 1.50 \text{ mm}$$

Since this deflection is less than the recommended limit of 2.5 mm, supporting it with two bearings is acceptable.

Step 7: Calculate Drive Shaft Torque (T_O) – Formula 9

$$T_o = ABP \times B \times \frac{P.D.}{2}$$

 $T_o = 920 \times 1.2 \times \frac{198}{2}$
= 109,296 kg-mm

From the maximum recommended torque curve in *Table 9*, we see the maximum torque for a journal diameter of 60 mm is 180,000 kg-mm. Therefore, the minimum journal diameter in this case should be about 55 mm.

Step 8: Calculate Belt Drive Power-Formula 10

Belt power =
$$\frac{ABP \times B \times V}{6.12}$$
Belt power =
$$\frac{920 \times 1.2 \times 6.0}{6.12}$$

Belt power = 1082 Watts

Step 9: Determine Drive Motor Power

Assume this conveyor will be driven by an electric motor, through a triple reduction, spur gear reducer, chain and sprockets. The shafts are supported by ball bearings. From the table on *Power Requirements*, the total of the efficiency losses in the machinery components are estimated to be 11%. The motor power is found from:

Motor power =
$$\frac{1082}{100 - 11}$$
 × 100 = 1216 watts

Therefore a 2-kW motor is a good choice.

Food Handling Example Conditions (in U.S. Units)

120,000 lb/hr of raw, washed vegetables (product loading of 10 lb/sq ft) are to be lifted a vertical distance of 15 ft on an elevating conveyor 25 ft long and 2 ft wide. The environment is wet, the temperature is ambient, and belt speed is to be 75 ft/min. Wearstrip material is ultra high molecular weight (UHMW) and the pre-selected belt is a Series 800 Perforated Flat Top polypropylene with flights and sideguards. The flight spacing is 8 in The belt will be started unloaded and run continuously. The preferred sprockets are 10 tooth, 6.5 in pitch diameter. Stainless steel (303/304) shafts are required.

Step 1: Determine the Backed-up Product Load (M_P) —Formula 1

Percentage of belt area backed-up

$$\mathbf{M_p} = \mathbf{M} \times \mathbf{F_p} \times (\underline{\phantom{\mathbf{M_p}}})$$

Since there is no product backed-up, disregard M_p . From *Table 2*, $F_w = 0.11$.

Step 2: Calculate Belt Pull (BP) - Formula 2

BP =
$$(M + 2W) \times F_W \times L + (M \times H)$$

BP = $[10 + 2(1.54)] \times 0.11 \times 25 + (10 \times 15)$
BP = 186 lb/ft of belt width

Step 3: Calculate Adjusted Belt Pull, (ABP) — Formula 3

$$\mathbf{ABP} = \mathrm{BP} \times \mathrm{SF}$$

Service factor is 1.4 (See *Table 6*, Elevating conveyor). Then:

ABP =
$$186 \times 1.4$$

ABP = $260 \text{ lb/ft of belt width}$

Step 4: Calculate Allowable Belt Strength (ABS) — Formula 4

$$ABS = BS \times T \times S$$

The rated belt strength (BS) is 1,000 lb/ft. (See *Table 4*.) The temperature factor (T) is 0.98 and the strength factor (S) is 0.92. (See *Table 7*.)

ABS =
$$1,000 \times 0.98 \times 0.92$$

ABS = $902 \text{ lb/ft of belt width}$

Since ABS exceeds ABP, Series 800 Perforated Flat Top polypropylene belt is adequate for this application.

Step 5: Determine Maximum Spacing of Drive Shaft Sprockets

ABSU =
$$(ABP \div ABS) \times 100\%$$

ABSU = $(260 \div 902) \times 100\%$
ABSU = 29%

From the sprocket spacing chart in the *Series 800* product line, the maximum spacing of drive shaft sprockets is 6.0 in.

intralox[.]

FORMULAS AND TABLES

Step 6: Determine Drive Shaft Deflection

Total shaft load (w), is:

$$\mathbf{w} = (ABP + Q) \times B$$
 (Formula 6)

Pre-select a 1.5 in square stainless steel shaft.

Therefore:

$$\mathbf{w} = (260 + 7.65) \times 2$$

$$w = 535 lb$$

and shaft deflection (D), is:

$$\mathbf{D} = \frac{5}{384} \times \frac{\mathbf{W} \times \mathbf{L_S}^3}{\mathbf{E} \times \mathbf{I}}$$
 (Formula 7)

Assume L_s is 28 in From *Table 8*, E is 28,000,000 lb/in² and I is 0.42 in⁴.

Therefore:

$$\mathbf{D} = \frac{5}{384} \times \frac{535 \times 28^3}{28,000,000 \times 0.42}$$

$$\mathbf{D} = 0.013 \text{ in.}$$

Which is less than the recommended limit of 0.10 in.

Step 7: Calculate Drive Shaft Torque (To) - Formula 9

$$T_o = ABP \times B \times \frac{P.D.}{2}$$

 $T_o = 260 \times 2 \times \frac{6.5}{2}$
 $T_o = 1690 \text{ in-lb}$

From *Table 9* a torque of 1690 in/lb requires a minimum journal diameter of about 0.85 in with 303/304 stainless steel. Therefore, a journal diameter of 1.0 in (25.4 mm) is recommended.

Step 8: Calculate Belt Drive Power-Formula 10

$$\textbf{Belt horsepower} = \frac{ABP \times B \times V}{33,000}$$

$$\textbf{Belt horsepower} = \frac{260 \times 2 \times 75}{33,000}$$

Belt horsepower = 1.18 HP

Step 9: Determine Drive Motor Power

Assume it is determined from *Power Requirements*, that the total efficiency losses are expected to be 20%. The Motor Horsepower, then, is found from:

Motor horsepower =
$$\frac{1,18}{100-20}$$
× 100
= 1.48 HP

In this case, a 1.5-HP motor is a suitable choice.

Bi-Directional Conveyor Example Conditions (in Metric Units)

A canning plant accumulator table, measuring 6 m in length and 2.4 m wide, is to handle cans weighing 50 kg/m². Belt speed will be 3.0 m/min. Frequent loaded starts are expected. The belt will operate at 21°C. The wearstrips are to be stainless steel. The belt will run dry. Series 900 Raised Rib in acetal is the preferred belt, using 18 tooth, 156-mm pitch diameter sprockets on 60-mm square shafts of 304 stainless steel.

Step 1: Determine the Backed-up Product Load (M_P) —Formula 1

Percentage of belt area backed-up

$$\mathbf{M_p} = \mathbf{M} \times \mathbf{F_p} \times (\frac{}{100})$$

Since there is no product backed-up, ignore M_p.

$$F_{\rm w} = 0.19$$

Step 2: Calculate Belt Pull (BP) - Formula 2

$$\mathbf{BP} = (M + 2W) \times F_{W} \times L + (M \times H)$$

 $\mathbf{M} = 50 \, \text{kg/m}^2$

 $W = 8.19 \text{ kg/m}^2$

L = 6 m

 $F_{w} = 0.19$

 $\mathbf{H} = \mathrm{zero}$

BP = $[50 + 2(8.19)] \times 0.19 \times 6$

BP = 76 kg/m of width

Step 3: Calculate Adjusted Belt Pull (ABP) — Formula 3

ABP = $BP \times SF \times 2.2$

 $\mathbf{ABP} = 76 \times 1.2 \times 2.2$

ABP = 201 kg/m of width

Step 4: Calculate Allowable Belt Strength (ABS) – Formula 4

 $\textbf{ABS} = \textbf{BS} \times \textbf{T} \times \textbf{S}$

BS = Rated belt strength (see *Table 4*)

T = 0.98 (see *Table 7*)

S = 1.0

ABS = $2200 \times 0.98 \times 1.0$

ABS = 2156 kg/m of width

Therefore, since ABS exceeds ABP, Series 900 Raised Rib in acetal is a suitable choice.

Step 5: Determine Maximum Spacing of Drive Shaft Sprockets

Since both the carryway and returnway sides are under tension, the idle shafts must be treated as drive shafts for sprocket spacing and deflection calculations.

ABSU = $(ABP \div ABS) \times 100\%$

ABSU = $(201 \div 2,156) \times 100\%$

ABSU = 9%

From the sprocket spacing chart in the *Series 900* product line, the maximum sprocket spacing is 95 mm.

Step 6: Confirm Drive Shaft Strength

Total shaft load (w), is:

 $\mathbf{w} = (\text{Corrected ABP} + Q) \times B$ (Formula 6)

 $\mathbf{w} = (182 + 29.11) \times 2.4$

 $\mathbf{w} = 507 \,\mathrm{kg}$

A check of *Table 12* reveals that the shaft load of 507 kg applied to a 60-mm square stainless steel shaft. This allows a maximum span of about 2600 mm. Since this conveyor is 2.4 m or 2400 mm wide, intermediate bearings are not required.

Calculate drive shaft torque (T_0) (Formula 9):

$$T_0 = T_0 = ABP \times B \times \frac{P.D.}{2}$$

ABP = 201 kg/m of width

 $\mathbf{B} = 2.4 \,\mathrm{m}$ of width

P.D. = 156 mm

$$T_0 = T_0 = 201 \times 2.4 \times \frac{156}{2}$$

$$T_0 = 37,627 \text{ kg-mm}$$

From the maximum recommended torque chart, the minimum journal diameter for a torque of 37,627 kg-mm would be about 27 mm. Since a 60-mm shaft is needed, due to deflection, the journal diameter can be as large as 55 mm, for example.

Step 7: Calculate Power Required to Drive Belt (Formula 10)

Belt power =
$$\frac{ABP \times B \times V}{6.12}$$

ABP = 201 kg/m of width (above)

 $\mathbf{B} = 2.4 \text{-kg/m} \text{ width (above)}$

V = 3.0 m/min (above)

Belt power =
$$\frac{201 \times 2.4 \times 3.0}{6.12}$$

Belt power = 236 Watts

Step 8: Determine Drive Motor Power

For information about efficiency losses in mechanical components, see *Power Requirements*. Assume the total of the efficiency losses for this conveyor are determined to be about 25%. Therefore, motor power is:

Motor power =
$$\frac{236}{100 - 25}$$
 × 100 = 315 Watts

Therefore, a 1/3 kW motor is a good selection.

Tables

Table 1. (W) Belt Weight in lb/ft² (kg/m²)

Series	Style		0				
361162	Style	Polypropylene	Polyethylene	Acetal & HSEC Acetal	Special Applications Materials		
	This information is incorporated into the charts for each series and belt style.						

Table 2. (Fw) Coefficient of Startup Friction Between Wearstrip & Belt

	Standard Materials ¹										
Wearstrip Material		Poly	propylene		Polyet	hylene	Ace	etal HSEC Aceta		Acetal	
wearsurp material	Smoo	Smooth Surface Abrasive Surface ²		Smooth Surface		Smooth Surface		Smooth Surface			
	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	
UHMW	0.11	0.13	NR	NR	0.24	0.32 ³	0.10	0.10	0.10	0.10	
HDPE	0.09	0.11	NR	NR	NR	NR	0.09	0.08	0.09	0.08	
Molybdenum-filled or silicon-filled nylon	0.24	0.25	0.29	0.30	0.14	0.13	0.13	0.15	0.13	0.15	
Cold-rolled finish stainless or carbon steel	0.26	0.26	0.31	0.31	0.14	0.15	0.18	0.19	0.18	0.19	

Table 3. (Fp) Coefficient of Running Friction Between Container & Belt

Standard Materials ⁴⁵								
Polypropylene		Polyethylene ⁶		Acetal		HSEC Acetal		
Wet	Dry	Wet	Dry	Wet	Dry	Wet	Dry	
0.18	0.19	0.08	0.09	0.13	0.14	0.13	0.14	
0.26	0.32	0.10	0.13	0.13	0.13	0.19	0.20	
0.11	0.17	0.08	0.08	0.13	0.16	0.13	0.16	
_	0.21	_	0.15	_	0.18	_	0.18	
0.40	0.40	0.20	0.24	0.33	0.27	0.33	0.27	
	Wet 0.18 0.26 0.11 —	Wet Dry 0.18 0.19 0.26 0.32 0.11 0.17 - 0.21	Wet Dry Wet 0.18 0.19 0.08 0.26 0.32 0.10 0.11 0.17 0.08 - 0.21 -	Polypropylene Polyethylene ⁶ Wet Dry Wet Dry 0.18 0.19 0.08 0.09 0.26 0.32 0.10 0.13 0.11 0.17 0.08 0.08 - 0.21 - 0.15	Polypropylene Polyethylene ⁶ Acc Wet Dry Wet Dry Wet 0.18 0.19 0.08 0.09 0.13 0.26 0.32 0.10 0.13 0.13 0.11 0.17 0.08 0.08 0.13 - 0.21 - 0.15 -	Polypropylene Polyethylene ⁶ Acetal Wet Dry Wet Dry 0.18 0.19 0.08 0.09 0.13 0.14 0.26 0.32 0.10 0.13 0.13 0.13 0.11 0.17 0.08 0.08 0.13 0.16 - 0.21 - 0.15 - 0.18	Polypropylene Polyethylene ⁶ Acetal HSEC Wet Dry Wet Dry Wet 0.18 0.19 0.08 0.09 0.13 0.14 0.13 0.26 0.32 0.10 0.13 0.13 0.13 0.19 0.11 0.17 0.08 0.08 0.13 0.16 0.13 - 0.21 - 0.15 - 0.18 -	

Note: Belts operating dry on a backed-up conveyor may, depending on speed and weight, wear a rough surface on the belt. The rough surface can substantially increase the coefficient of friction.

Table 4. Belt Strength in lb/ft (kg/m)

Series	Style	Standard Materials			Special Applications Materials	
301103	Style	Polypropylene	Polyethylene	Acetal & HSEC Acetal	Special Applications materials	
This information is incorporated into the charts for each series and belt style.						

¹ For special applications materials, see appropriate data pages.

² Based on Intralox tests.

³ Increased wear can occur at belt speeds above 50 feet per minute (15 meter/min).

⁴ Friction factor values are highly dependent on environmental conditions. The low value of the friction factor range is an experimentally derived friction factor for new belting on new wearstrip.
Only use this value in the cleanest environments or where water or other lubricating agents are present. Most applications require adjustment, based on the environmental conditions surrounding the conveyor.

⁵ For special applications materials, see appropriate data pages.

⁶ Polyethylene generally not recommended for container handling.

Table 5. Sprocket and Support Quantity Reference

Nominal Width ¹			Minimum Number of	Sprockets per Shaft	2	Minimum Number of Supports				
in	mm	Series 200	Series 1700	Series 100, 400, 800, 850, 1200, 1400,	Series 900, 1100, 1500, 1600, 2200	Series 100, 900, 1000, 1100, 1400, 1500, 1600, 1650 Carryway Returnway			, 800, 850, 1200, , 2200, 2400 Returnway	
				1800, 1900		, ,		, ,	,	
2	(51)	1	N/A	1	1	2	2	2	2	
4	(102)	1	N/A	1	1	2	2	2	2	
6	(152)	2	2	2	2	2	2	2	2	
7	(178)	2	2	2	2	3	2	2	2	
8	(203)	2	2	2	2	3	2	2	2	
10	(254)	2	3	2	3	3	2	3	2	
12	(305)	3	3	3	3	3	2	3	2	
14	(356)	3	3	3	5	4	3	3	3	
15	(381)	3	3	3	5	4	3	3	3	
16	(406)	3	4	3	5	4	3	3	3	
18	(457)	3	4	3	5	4	3	3	3	
20	(508)	3	4	5	5	5	3	4	3	
24	(610)	5	5	5	7	5	3	4	3	
30	(762)	5	6	5	9	6	4	5	4	
32	(813)	5	7	7	9	7	4	5	4	
36	(914)	5	8	7	9	7	4	5	4	
42	(1067)	7	9	7	11	8	5	6	5	
48	(1219)	7	10	9	13	9	5	7	5	
54	(1372)	9	11	9	15	10	6	7	6	
60	(1524)	9	12	11	15	11	6	8	6	
72	(1829)	11	15	13	19	13	7	9	7	
84	(2134)	13	17	15	21	15	8	11	8	
96	(2438)	13	20	17	25	17	9	12	9	
120	(3048)	17	24	21	31	21	11	15	11	
144	(3658)	21	29	25	37	25	13	17	13	
For Othe	er Widths	Use odd number of sprockets at a maximum 7.5 in (191 mm) spacing	Use odd number of sprockets at a maximum 5 in (127 mm) spacing	Use odd number of sprockets at a maximum 6 in (152 mm) spacing	Use odd number of sprockets at a maximum 4 in (102 mm) spacing	Maximum 6 in (152 mm) spacing	Maximum 12 in (305 mm) spacing	Maximum 9 in (229 mm) spacing	Maximum 12 in (305 mm) spacing	

Notes

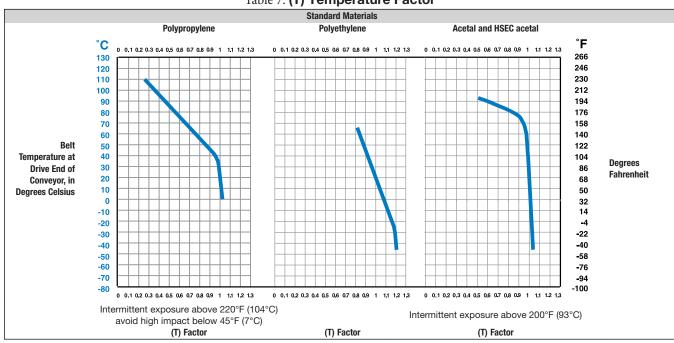
Additional quantities can be found in the sprocket and Support Quantity Reference Tables for Series 1200, Series 1500, Series 1700, Series 2400, and Series 2600.

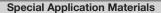
Table 6. (SF) Service Factor

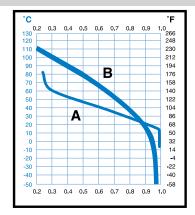
-	Starts under no load, with load applied gradually	1.0
1	Frequent starts under load (more than once per hour) add 0.2	
1	At speeds greater than 100 FPM (feet per minute) (30 meters/min) add 0.2	
1	Elevating conveyors add 0.4	
1	Pusher conveyors add 0.2	
1	total	
1	Note: At speeds greater than 50 fpm (15 m/min) on conveyors that are started with backed-up lines, consider soft-start me	otors.

If carryways extend into sprocket area, ensure sprockets do not interfere with carryways.

These sprocket numbers are the minimums. Additional sprockets can be required. See the series and style data pages for specific applications.


¹ Actual belt widths vary from nominal. If actual width is critical, contact Intralox Customer Service.


 $^{^{\}rm 2}$ Fix the center sprocket only. (With two sprockets on shaft, fix the right-hand sprocket only.)


intralox^{*}

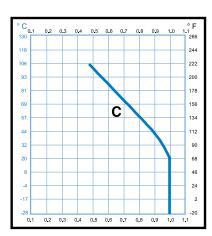
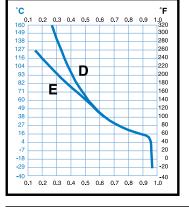
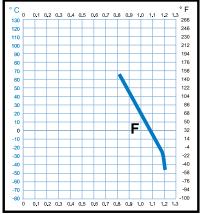

FORMULAS AND TABLES

Table 7. (T) Temperature Factor





- A Flame retardant
- B Nylon, SELM, LMAR
- C Polypropylene composite

- **D** HHR nylon
- E HR nylon
- F Detectable polypropylene

Intermittent exposure above 220°F (104°C). Avoid high impact below 45°F (7°C)

Table 8. Shaft Data

B-Shaft Data	(Q) Shaft Weig	ht, lb/ft (kg/m)	(I) Billiam and of Installation in A (mars) 4
SIZE	Carbon Steel	Stainless Steel	(I) Moment of Inertia, in ⁴ (mm) ⁴
5/8 in square	1.331	1.33	0.013
1 in square	3.401	3.401	0.083
1.5 in square	7.65 ¹	7.65 ¹	0.42
2.5 in square	21.25 ¹	21.25	3.25
3.5 in square	41.60 ¹	41.60	12.50
25 mm square	(4.920)2	(4.920) ²	(32.550)
40 mm square	(12.55) ²	(12.55) ²	(213,300)
60 mm square	(29.11) ²	(29.11)2	(1,080,000)
65 mm square	(34.16) ²	(34.16) ²	(1,487,600)
(E) Modulus of elasticity lb/ln² (kg/mm²)	30,000,000 (21,100)	28,000,000 (19,700)	

Table 9. Maximum Recommended Torque on Drive Shaft

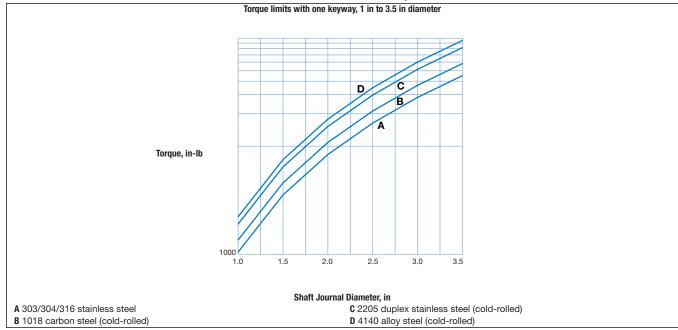
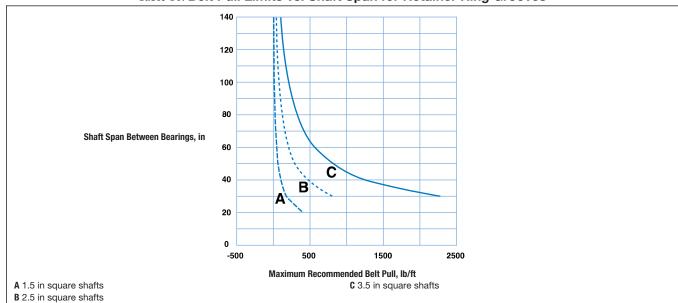
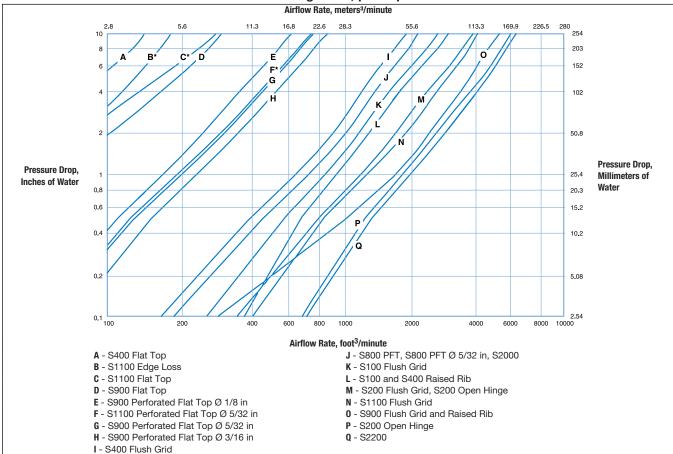



Table 10. Belt Pull Limits vs. Shaft Span for Retainer Ring Grooves


¹ Intralox USA can supply square shafts machined to specifications in these sizes in carbon steel (C-1018), stainless steel (303/304 and 316), and aluminum (6061-T6).

² Intralox Europe offers square shafting in these sizes in carbon steel (KG-37) and stainless steel (304).

intralox^{*}

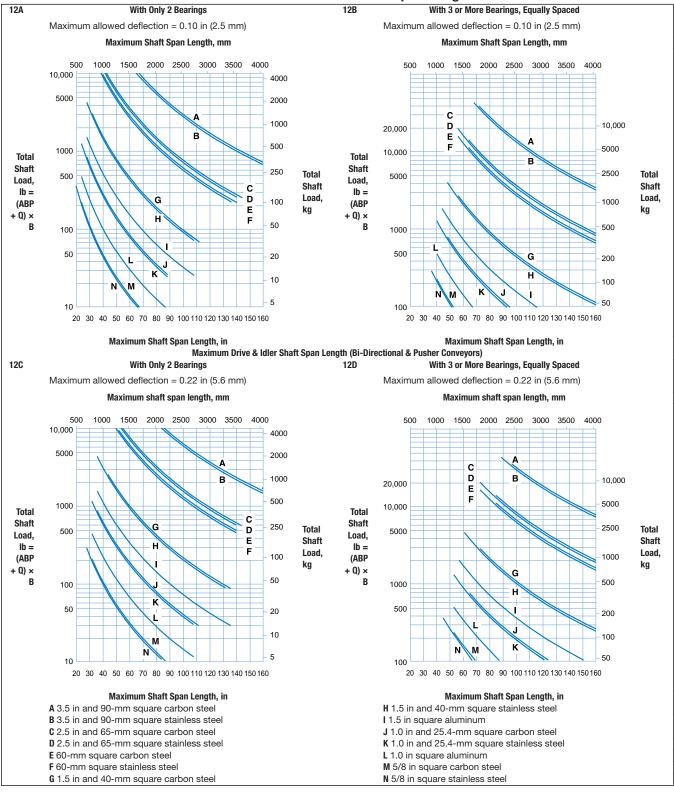

FORMULAS AND TABLES

Table 12. Maximum Drive Shaft Span Length

Measurement Conversion Factors

U.S. Unit	Multiply By →	Metric (SI) Unit	Multiply By →	U.S. Unit		
0.0. 0	manipiy by	Length	Manapiy Dy	0.0. 0		
Inch (in)	25.40	Millimeter (mm)	0.03937	Inch (in)		
Inch (in)	0.0254	Meter (m)	39.37	Inch (in)		
Foot (ft)	304.8	Millimeter (mm)	0.0033	Foot (ft)		
Foot (ft)	0.3048	Meter (m)	3.281	Foot (ft)		
1 001 (11)	0.3046	Area	3.201	1 001 (11)		
Inch² (in²)	645.2	Millimeter ² (mm ²)	0.00155	Inch² (in²)		
Inch² (in²)	0.000645	Meter ² (m ²)	1550.0	Inch² (in²)		
Foot² (ft²)	92.903	Millimeter ² (mm ²)	0.00001	Foot² (ft²)		
Foot² (ft²)	0.0929	Meter ² (m ²)	10.764	Foot² (ft²)		
1 001 (11)	0.0325	Volume	10.704	1001 (11)		
Foot ³ (ft ³)	0.0283	Meter ³ (m ³)	35.31	Foot ³ (ft ³)		
Foot³ (ft³)	28.32	Liter (I)	0.0353	Foots (fts)		
1 001 (11)	20.02	Velocity and Speed	0.0000	1001 (11)		
Foot/second (ft/s)	18.29	Meter/min (m/min)	0.0547	Foot/second (ft/s)		
Foot/minute (ft/min)	0.3048	Meter/min (m/min)	3.281	Foot/minute (ft/min)		
1 courtillate (turnin)	0.0040	Mass and Density	0.201	1 oognimate (tønim)		
Pound-avdp. (lb)	0.4536	Kilogram (kg)	2.205	Pound-avdp. (lb)		
Pound/foot³ (lb/ft³)	16.02	Kilogram/meter3 (kg/m3)	0.0624	Pound/foot³ (lb/ft³)		
Tourist (ib/it)	10.02	Force and Force/Length	0.0021	T Garrage (1871)		
Pound-force (lb)	0.4536	Kilogram-force (kg)	2.205	Pound-force (lb)		
Pound-force (lb)	4.448	Newton (N)	0.225	Pound-force (lb)		
Kilogram-force (kg)	9.807	Newton (N)	0.102	Kilogram-force (kg)		
Pound/foot (lb/ft)	1.488	Kilogram/meter (kg/m)	0.672	Pound/foot (lb/ft)		
Pound/foot (lb/ft)	14.59	Newton/meter (N/m)	0.0685	Pound/foot (lb/ft)		
Kilogram/meter (kg/m)	9.807	Newton/meter (N/m)	0.102	Kilogram/meter (kg/m)		
raiogram/motor (ag/m/	0.001	Torque	0.102	Talogram/motor (ag/m/		
Inch-pound (in-lb)	11.52	Kilogram-millimeter (kg-mm)	0.0868	Inch-pound (in-lb)		
inch-pound (in-lb)	0.113	Newton-meter (N-m)				
Kilogram-millimeter (kg-mm)	9.81	Newton/millimeter (N-mm)	0.102	Inch-pound (in-lb) Kilogram-millimeter (kg-mm)		
, ,		Moment of Inertia		, ,		
Inch ⁴ (in ⁴)	416,231	Millimeter ⁴ (mm ⁴)	0.0000024	Inch ⁴ (in ⁴)		
Inch ⁴ (in ⁴)	41.62	Centimeter ⁴ (cm ⁴)	0.024	Inch ⁴ (in ⁴)		
mon (m)		Pressure and Stress				
Pound/inch² (lb/in²)	0.0007	Kilogram/millimeter² (kg/mm²)	1422	Pound/inch² (lb/in²)		
Pound/inch² (lb/in²)	0.0703	Kilogram/centimeter ² (kg/cm ²)	14.22	Pound/inch² (lb/in²)		
Pound/inch² (lb/in²)	0.00689	Newton/millimeter ² (N/mm ²)	145.0	Pound/inch² (lb/in²)		
pound/inch² (lb/in²)	0.689	Newton/centimeter ² (N/cm ²)	1.450	Pound/inch² (lb/in²)		
Pound/foot² (lb/ft²)	4.882	Kilogram/meter² (kg/m²)	0.205	Pound/foot² (lb/ft²)		
Pound/foot² (lb/ft²)	47.88	Newton/meter ² (N/m ²)	0.0209	Pound/foot² (lb/ft²)		
(,	1	Power		(
Horsepower (hp)	745.7	Watt	0.00134	Horsepower (hp)		
Foot-pound/minute (ft-lb/min)	0.0226	Watt	44.25	Foot-pound/minute (ft-lb/min)		
	1	Temperature	1			
To Convert From	n	То		Use Formula		
Temperature Fahrenheit, °F		Temperature Celsius, °C	°C	S = (°F - 32) ÷ 1.8		
Temperature Celsius, °C		Temperature Fahrenheit, °F	°F	= (1.8 x °C) + 32		

Chemical Resistance Guide

The chemical resistance data is based on information from polymer manufacturers and Intralox field experience. The data is indicative only for the conditions under which it was collected and should be considered as a recommendation only, not as a guarantee. This data pertains to chemical resistance only, and the temperatures listed are generally the chemical application temperatures. Other design and personal safety concerns were not considered in making recommendations. Materials and products should be tested under exact intended service conditions to determine their suitability for a particular purpose.

Chemicals listed without a concentration are for the undiluted chemical. Chemicals listed with a concentration are in solution with water. Descriptions in parentheses are the active ingredient. In general, as the chemical application temperature, chemical concentration, and exposure time rises, the chemical resistance of a material decreases. Additional information about chemicals and materials of construction not listed may be obtained by contacting the Technical Support Group (TSG) at Intralox.

Thermoplastics Elastomers (TPE) are a growing class of polymers that offer a unique combination of plastic and

elastomeric properties. The most obvious of these properties is the ability to be injection molded onto a substrate for achieving a performance criteria. The fact that a rubber (elastomeric) component is present means that exposure to various chemicals in the application must be considered. Sources of chemicals include the product to be conveyed, materials used to clean and maintain the equipment and belt, and any other potential sources in the area. Intralox suggests doing appropriate testing and consulting with our staff of experts early on to establish fitness for use in a particular application. In general, TPEs are compatible with both weak acids, most alkalis, and alcohols. Contact with strong acids poses a problem. Due to a rubber component, oils and fats will have a swelling effect over time. Organic solvents and various hydrocarbons are also expected to cause problems. Generally speaking, fuels of any type will cause problems over time. In food handling applications, ensure that the ingredients present in the food are considered. Also, in food handling, the higher the applied chemical temperature, chemical concentration, and exposure time, the more rapid the reaction between the chemical and the TPE will be.

MATERIAL SUITABILITY CODE

R = Resistant

NR = Not Resistant

LR = Limited Resistance

– = No Available Information

	STANDARD MATERIALS							SPECIAL APPLICATIONS MATERIALS								
CHEMICAL NAME	Polypro	Polypropylene Polyethy		nylene Acetal		HSEC Acetal		Heat Resistant Nylon		Nylon SELM		Flame Retardant Material		Hi-Impact		
	70	140	70	140	70	140	70	140	70	140	70	140	70	140	70	140
	°F	°F	°F	°F	°F	°F	°F	°F	°F	°F	°F	°F	°F	°F	°F	°F
	(21	(60	(21	(60	(21	(60	(21	(60	(21	(60	(21	(60	(21	(60	(21	(60
	°C)	°C)	°C)	°C)	°C)	°C)	°C)	°C)	°C)	°C)	°C)	°C)	°C)	°C)	°C)	°C)
		Material Suitability Codes: R = Resistant NR = Not Resistant LR = Limited Resistant — = No Available Information														
Acetic Acid																
Acetic Acid - 5%	R	R	R	R	R	_	R	_	LR	_	LR	NR	R	_	R	_
Acetic Acid - 10%	R	R	R	R	R	_	R		R	NR	_	_	R	_	_	_
Acetic Acid - 50%	R	R	R	R	NR	NR	NR	NR	NR	NR	_	_	_	_	_	_
Acetone	R	R	R	R	R	R	R	R	R	_	R	R	NR	NR	NR	NR
Alcohol - All Types	R	R	R	R	_	_	_	_	R	R	R	R	R	R	NR	_
Alum - All Types	R	R	R	R	_	_	_	_	LR	_	_	_	_	_	_	_
Almond Oil	R	R	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Alumimum Alum	R	R	R	R	_	_	_	_	_	_	_	_	_	_	_	_
Aluminum Compounds	R	R	R	R	_	_	_	_	LR	R	R	R	R	R	LR	_
Aluminum Chloride	R	R	R	R	LR	NR	LR	NR	R	_	_	_	R	_	R	R
Aluminum Flouride	R	R	R	R	_	_	_	_	_	_	_	_	_	_	_	_
Aluminum Hydroxide	R	R	R	R	R	R	R	R	R	_	_	_	R	_	R	_
Aluminum Nitrate	R	R	_	_	LR	NR	LR	NR	LR	LR	_	_	R	_	R	_
Aluminum Phosphate	R	R	R	R	_	_	_	_	LR	LR	_	_	_	_	_	_
Aluminum Sulfate	R	R	R	R	LR	NR	LR	NR	LR	LR	R	R	R	_	R	_
Ammonia	R	R	R	R	R	R	R	R	LR	LR	R	R	R	NR	R	_
Ammonium Compounds	R	R	R	R	-	_	R	_	LR	R	R	R	R	R	LR	-
Ammonium Acetate	R	_	R	R	R	_	R	_	_	_	R	R	_	_	R	_
Ammonium Carbonate	R	R	R	R	R	R	R	R	_	_	R	R	_	_	R	_
Ammonium Chloride	R	R	R	R	R	LR	R	LR	R	LR	R	R	R	_	R	-
Ammonium Fluoride	R	R	R	R	_	_	_	_	_	-	_	_	_	_	_	_

OREMICAL NAME				STAN	IDARD	MATE	RIALS				SPEC	CIAL AF	PLICA	TIONS	MATER	RIALS	
CREMINDLANAME		Polypr	opylene	Polyet	hylene	Ac	etal	HSEC	Acetal			Nylon	SELM	Reta	rdant	Hi-Ir	npact
Material Sub-birdy Codes: R. Resistant Material Resistant Materi	CHEMICAL NAME	°F (21	°F (60	°F (21	°F (60	°F (21	°F (60	°F (21	°F (60	°F (21	°F (60	°F (21	°F (60	°F (21	°F (60	°F (21	140 °F (60
Ammonium Nirate R R R R R R R R R R R R R R R R R R R		°C)	,	- /	- 7	- 7	- /	,	,	-,	,	-,	,	,	,	,	°C)
Hydroxole	Ammonium	_		lonar oan	distinct Co.						Limitou	liosistant					
Ammonium Salts	,			_	_					_	_	_					_
Phosphate		R	R	R	R	R	LR	R	LR	R	LR	R	R	R	_	R	-
Ammonium Sulphate		R	R	R	R	R	_	R	-	R	LR	R	R	-	-	_	-
Amy Acetate NR NR NR R R R - R - R -	· · · · · · · · · · · · · · · · · · ·	_	_		_	R	_		_		LR	_	_				
Army Chloride NR NR NR NR NR NR -	<u>'</u>																
Aniline R LR R R R - LR - LR - LR R R R R - NR Aniliteaze R R R T R R R R R				-		-											NR
Anthreace R R R R T R R R R R																	NR NR
Agua Regia LR NR NR NR NR LR - LR - NR																	-
Assentic Acid Asphalt						LR	_	LR	_	NR	NR					NR	NR
Asphalt						_	_		_	_	_			_			_
Serium Compounds				-													_
Berlum Charbonate	<u>'</u>						+										<u> </u>
Barium Chloride	<u>'</u>																+-
Bartum Stape Grease R						ļ											-
Bartieny Sulphate R R R R R R			R			 	_		_	_		_	_		_	R	_
Battery Acid																	_
Beer R	<u> </u>					1											<u> </u>
Benzenesulfonic Acid	•																<u> </u>
Benzoira Acid						ļ	R										 _ _
10%																	NR
Bone Oil							_			_							
Borax																	NR
Boric Acid				-			-										_
Brake Fluid						1					ļ						+-
Brine Saturated							R		R		-						-
Brine Water	Brine Acid					_	_	_	_	_	_	_	_	_	_	_	_
Bromic Acid				.													-
Bromine - Liquid or Fumes																	 -
Fumes						-		_									
Butter R <td>· ·</td> <td>NR</td> <td>NR</td> <td>NR</td> <td>NR</td> <td>_</td> <td>_</td> <td>_</td> <td> -</td> <td>NR</td> <td>NR</td> <td>NR</td> <td>NR</td> <td>NR</td> <td>NR</td> <td>_</td> <td>_</td>	· ·	NR	NR	NR	NR	_	_	_	-	NR	NR	NR	NR	NR	NR	_	_
Butyl Acetate					_		_		_		NR				NR	_	_
Butyl Acrylate				-													-
Butyl Glycol	,																NR —
Butyric Acid																	+-
Calcium Carbonate R	<u> </u>		R				+				-						NR
Calcium Chloride R																	_
Calcium Hydroxide R																	
Calcium Hypochlorite R																	- NR
Calcium Nitrate R																	
Calcium Soap Grease R LR -	Calcium Nitrate	R	R	R	R		_		_			R	R		_		_
Calcium Sulphate R																	_
Calgonite - 0.3% R R - - R																	_
Carbon Dioxide R																	_ _
Carbon Disulfide LR NR LR NR R - R - R NR R - NR R - R																	_
Castor Oil R				-			+										NR
Cellosolve - TM R							_										_
Chloracetic Acid 0-10% R R R R R NR							-										_ ND
0-10%							-										NR
Chlorine - Gas NR NR — NR		R	R	R	R	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Chlorine - Liquid NR NR R R NR		NR	NR	_	_	NR	NR	NR	NR	_	NR	NR	NR	NR	NR	LR	-
THE THE THE THE TIME THE THE THE THE THE THE THE THE THE	Chlorine - Liquid	NR	NR	R	R	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
	Chlorine Water (0.4% CI)	R	LR	R	LR	NR	NR	NR	NR		NR	NR	NR			NR	_
Chlorobenzene NR NR LR NR R R R R R R LR LR NR NR NR	Chlorobenzene																NR
Chloroform NR NR NR LR NR LR NR																	NR NR

			STAN	IDARD	MATER	RIALS				SPEC	CIAL AF	PLICA	TIONS	MATEF	RIALS	
	Polypro	opylene	Polyet	hylene	Ac	etal	HSEC	Acetal	Heat Re	esistant Ion	Nylon	SELM	Reta	me rdant erial	Hi-In	npact
CHEMICAL NAME	70	140	70	140	70	140	70	140	70	140	70	140	70	140	70	140
	°F	°F	°F	°F	°F	°F	°F	°F	°F	°F	°F	°F	°F	°F	°F	°F
	(21 °C)	°C)	(21 °C)	(60 °C)	(21 °C)	(60 °C)	(21 °C)	°C)	(21 °C)	°C)	(21 °C)	°C)	(21 °C)	°C)	(21 °C)	°C)
	0)	,	terial Suit	- 7	- /	-,	,	ot Resista	-,	Limited	,	-,	o Availabl	-,	-,	6)
Chromic Acid - 10%	R	R	LR	LR	NR	NR	NR NR	NR	NR	NR	NR	— = N	LR	— —	NR	NR
Citric Acid	R	R	R	R	_	_	_	-	_	R	R	_	R	R	R	_
Citric Acid - 10%	R	LR	R	R	LR	NR	LR	NR	LR	_	R	_	R	LR	R	-
Citrus Juices	R	R	R	R	R	_	R	_	_	_	_	_	R	_	_	_
Clorox - TM	R	R		_	_	_	_	_	_	NR	NR	NR	_	_	NR	_
Coconut Oil Coffee	R R	R R	R R	R R	_	_	_	_		_	R R	R R	_	_	R —	_
Conee Compounds	R	R	R	R	+=-		_	_	LR	_	LR	_	R	R	R	+=-
Copper Chloride	R	R	R	R	R	_	R	_	LR	_	_	_	R	_	R	-
Copper Fluoride	R	R	R	R	_	_	_	_	_	_	_	_	_	_	_	-
Copper Nitrate	R	R	R	R	R	_	R	_	LR	_	_	_	R	_	R	-
Copper Salts	R	R	R	R	R	_	R	_	LR	_	_	_	R	_	R	_
Copper Sulphate	R	R	R	R	R	R	R —	R	LR	_	R	_	R	_	R	-
Corn Oil Cottonseed Oil	R R	R R	R R	LR R		_		_		_	R —	_	R R	_	R	_
Cresol	R	R	R	LR	_	_	_	_	NR	NR	NR	NR	_ _	_	NR	NR
Crude Oil	_	_	R	LR	R	_	R	_	_	_	_	_	R	NR	_	-
Cyclohexane	R	NR	R	R	R	_	R	_	R	-	R	-	R	-	R	_
Cyclohexanol	R	LR	R	R	R	_	R	_	R	_	_	_	R	_	-	_
Cyclohexanone	R	NR	R	LR	R	_	R	_	R	_	_	_	R	_	N	_
Detergents Dextrin	R R	R R	R R	R R	R R	R —	R R	R —			_	_	R —	R —	_	_
Dibutyl Phthalate	R	LR	R	LR	_ n	_		_	R	R			R	LR	NR	NR
Diesel Fuel	R	LR	R	LR	R	R	R	R	R	R	R	R	LR	NR	R	-
Diethyl Ether	R	NR	LR	LR	R	R	R	R	R	_	R	_	R	_	NR	NR
Diethylamine	R	R	R	R	_	_	_	_	R	_	_	_	_	_	R	_
Diethylene	R	R	_	-	_	_	_	_	_	_	_	_				
Diglycolic Acid - 30% Diisooctyl Phthalate	R R	R R	R —	R —	_	_	_	_		_	_	_	_	_	_	_
Dimethyl Phthalate	R	R	+=-	_	+=-	_		_						_	_	-
Dimethylamine	R	R	_	_	_	_	_	_	R	_	_	_	_	_	_	_
Dioctyl Phthalate	R	LR	_	_	_	_	-	_	R	_	_	_	_	_	_	_
Ethyl Acetate	R	LR	R	LR	R	NR	R	NR	R	_	_	_	LR	LR	NR	NR
Ethyl Alcohol (Ethanol)	R	R	R	R	R	R	R	R	R	_	R	_			LR	LR
Ethyl Ether	LR	LR	LR	LR	<u> </u>	_	_	_		_	_	_	_	_	_	<u> </u>
Ethylamine	R	R	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>
Ethylene Chloride	NR	NR	-	_	-	_	_	_	_	_	_	_	_	_	_	
Ethylene Glycol	R	R	R	R	R	LR	R	LR	R	LR	_	_	R	_	LR	_
Ferric / Ferrous	R	R	R	R	_	_	_	_	LR	_	_	_	_	_	LR	_
Compounds Ferric Chloride	R	R	R	R	R	R	LR	_	LR	_	LR	_	_	_	R	_
Ferrous Chloride	R	R	R	R	R	R	_ _	_	L1 1		_ _	_	_	_	R	-
Ferric Nitrate	R	R	R	R	-	_	_	_	_	_	_	_	_	_	R	-
Ferrous Nitrate	R	R	_	-	_	-	_	_	_	-	-	-	-	-	_	_
Ferric/Ferrous	R	R	R	R	_	_	_	_	_	_	_	_	_	_	R	_
Sulphate Fertilizers	R	R	R	R	_	_	_	_		_	_	_	R	_	_	_
Formaldehyde - 30%	R	R	R	R	R	R	R	R	R	_	R	NR	R	_	- NR	- NR
Formic Acid - 10%	R	_	R	R	LR	LR	LR	LR	NR	NR	LR	NR	R	LR	NR	NR
Formic Acid - 85%	R	LR	R	R	NR	NR	NR	NR	NR	NR	_	-	LR	NR	NR	NR
Freon	R	LR	R	R	R	R	R	R	R	-	-	-	R	R	-	_
Fuel Oils	R	LR	R	LR	R	_	R	_	R	_	R	R	R	_	R	_
Furfural	_ D	NR NR	R	R LR	R	_ D	R	_ D	R	_	_ D	R	R	LR	LR	-
Gasoline Glucose	R R	R	R R	R	R R	R —	R R	R —	R _	_	R R	R	R —	LR —	R	_
Glycerin	R	R	R	R	R	R	R	R	R	LR	R	R	R	LR	R	+=-
Glycerol	R	R	_	_	R	LR	R	LR		_	R	R	_	_	_	-
n-Heptane	LR	NR	R	LR	R	-	R	_	R	-	R	R	R	R	R	_
Hexane	R	NR	R	LR	R	R	R	R	R	_	R	R	R	R	R	_
Hydrobromic Acid - 10%	R	R	R	R	LR	_	LR	_	NR	NR	_	_	LR	_	NR	NR
Hydrochloric Acid	R	R	R	R	NR	NR	NR	NR	NR	NR	NR	NR	LR	LR	NR	_
Hydrochloric Acid -																
2%	_	_	R	R	LR	NR	LR	NR	NR	NR	NR	NR	R	_	R	_
Hydrochloric Acid -	R	R	R	R	NR	NR	NR	NR	NR	NR	NR	NR	R	_	_	_
10%	l .,	l .,	l .,	l .,		. *** 1	. *" '	'"'	. 41 1	'*''			l .,			

			STAN	IDARD	MATE	RIALS				SPEC	CIAL AF	PLICA	TIONS	MATER	RIALS	
	Polypr	opylene	Polyet	hylene	Ac	etal	HSEC	Acetal		esistant Ion	Nylon	SELM	Reta	me rdant erial	Hi-Ir	npact
CHEMICAL NAME	70 °F (21 °C)	140 °F (60 °C)														
Hydrochloric Acid -				ability Co				ot Resista		: Limited			o Availab	le Informa	ition	
38%	R	LR	R	R	NR	NR	NR	NR	NR	NR	NR	NR	_	_	_	-
Hydrofluoric Acid - 10%	R	R	R	R	NR	NR	NR	NR	NR	NR	NR	NR	LR	NR	NR	NR
Hydrofluoric Acid - 35%	R	R	R	R	NR	NR	NR	NR	NR	NR	_	_	NR	NR	NR	NR
Hydrofluoric Acid - 50%	R	LR	R	LR	NR	NR	NR	NR	NR	NR	_	_	NR	NR	NR	NR
Hydrogen Peroxide - 3%	R	R	R	R	R	R	R	R	NR	NR	R	R	R	LR	R	-
Hydrogen Peroxide - 30%	R	LR	LR	NR	NR	NR	NR	NR	NR	NR	LR	NR	R	LR	LR	_
Hydrogen Peroxide - 90%	LR	LR	LR	NR	NR	NR	NR	NR	NR	NR	NR	NR	_	_	NR	NR
Hydrogen Sulfide	R	R	R	R	LR	_	LR	_	LR	_	R	R	R	_	R	_
Hydroiodic Acid	NR R	NR R	_	_	_	_	_	_	_		<u>-</u>	_	— В	_	NR —	-
Igepal Iodine	R	R	R	R	- NR	- NR	NR	NR	NR	NR	_	_	H —	_	R	_
Isobutyl Alcohol	R	R	R	R	_	_	_	_	_	_	_	_	_	-	NR	NR
Isopropyl Alcohol	R	R	R	R	R	R	R	R	R	R	R	R	R	_	R	_
Isooctane	NR	NR	R	_	_	_	_	_	R	R	R	R	_	_	NR	_
Jet Fuel	LR	NR			R	R	R	R	_		_	_	R		R	_
Kerosene Lactic Acid - 10%	R —	NR —	R R	LR R	R R	R LR	R R	R LR	R	NR	— В	— В	R R	R —	R LR	_
Lactic Acid - 10%	R	R	R	R	R	NR	R	NR	NR	NR	NR	NR	_ n	Η	NR	+
Lactose	R	R	R	R	_	_	_	_	_	_	_	_	_	_	_	<u> </u>
Lanolin	R	LR	R	R	_	_	_	_	_	_	R	R	_	_	_	
Lard	_	_	R	R	_	_	_	_	_	_	_	_	_	_	R	_
Lauric Acid	R	R			_	_	_	_		_	_	_	_	_	_	-
Lead Acetate	R LR	R NR	R R	R	_	_	_	_	R —	_	— В	_	R —	_	R R	<u> </u>
Lemon Oil Ligroin	LR	NR	_ R	_ R	_	_	_				R		_	-	_ _	Η=
Lime Sulfur	R	-	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Linseed Oil	R	R	R	R	R	R	R	R	R	_	R	R	_	_	R	_
Lubricating Oil	R	LR	R	LR	R	_	R	_	R	LR	R	R	R	R	R	_
Magnesium Compounds	R	R	R	R	_	_	ı	_	LR	_	R	_	_	_	NR	_
Magnesium Carbonate	R	R	R	R	-	_	-	_	_	_	_	_	-	_	R	_
Magnesium Chloride	R	R	R	R	R	_	R	_	R	_	R	_	R	_	R	_
Magnesium Hydroxide	R	R	R	R	R	_	R	_	LR	_	_	_	_	_	R	_
Magnesium Nitrate	R	R	R	R	R	_	R	_	R		_	_	R		R	<u> </u>
Magnesium Sulphate Malic Acid	R R	R LR	R R	R R	R NR	– NR	R NR	– NR	R —	_ _	– NR	– NR	R R	_	R R	_ _
Maple Syrup	R	_ _	_	_	1411	1411	1411	1411	_	_			_ _	_	_ _	-
Manganese Sulfate	R	LR	R	R	_	R	_	R	R	_	R	_	R	_	_	_
Margarine	R	R	R	R	_	_	_	_	_	_	R	R	-	_	_	_
Meat Juices/Sauces	R	R	-	_					_	_	_	_	_	_	-	_
Mercuric Compounds Mercuric Chloride	R	R	R R	R	_	_		_	- ND	- ND	_ D	_	_	_	NR	_
Mercuric Chloride Mercury	R	R	R	R R	— В	_	R	_	NR R	NR —	R R	— В	R	_	R R	_
Methyl Alcohol	R	R	R	R	R	R	R	R	LR	_	R	R	NR	NR	LR	- -
Methyl Cellosolve	R	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Methyl Chloride	NR	NR	LR	_	R	_	R	_	R	_	_	_	_	_	_	
Methyl Ethyl Ketone	R	R	R	NR	LR	LR	LR	LR	R	_	R	R	NR	NR	LR	_
Methyl Isobutyl Ketone	R	R	R	NR	-	-	-	-	-	_	R	R	-	-	NR	NR
Methylene Chloride	LR	NR	LR	LR	NR	NR	NR	NR	LR	_	NR	NR	NR	NR	NR	NR
Methylsulfuric Acid Milk	R R	R R	R R	R R	R	_	R	_	LR	_	— В	— В	R	_	R	_
Mineral Oil	R	LR	R	LR	R	R	R	R		_	R	R	R	R	R	-
Mineral Spirits	R	R	R	_	_	_	_		_	_	_	_	_	<u> </u>	R	-
Molasses	R	R	R	R	_	_	_	_	_	_	_	-	R	_	R	_
Motor Oil	R	NR LR	R R	LR LR	R	R	R R	R	R	_	R R	R R	R R	LR	R	_
Naphtha	R				R	_		_	R	l —				_	R	_

			STAN	IDARD	MATE	RIALS				SPEC	CIAL AF	PLICA	TIONS	MATER	RIALS	
	Polypro	opylene	Polyet	hylene	Ac	etal	HSEC	Acetal		esistant Ion	Nylon	SELM	Reta	me rdant erial	Hi-In	npact
CHEMICAL NAME	70	140	70	140	70	140	70	140	70	140	70	140	70	140	70	140
CHEMICAL NAME	°F	°F	°F	°F	°F	°F	°F	°F	°F	°F	°F	°F	°F	°F	°F	°F
	(21	(60	(21	(60	(21	(60	(21	(60	(21	(60	(21	(60	(21	(60	(21	(60
	°C)	°C)	°C)	°C)	°C)	°C)	°C)	°C)	°C)	°C)	°C)	°C)	°C)	°C)	°C)	°C)
Nickel Chloride	R	R	R	ability Co	aes: K = 1	tesistant —	NK = N	ot Resista —	int LK≡ R	Limited	Kesistant —	— = N	o Availab	e intorma	R	Γ_
Nickel Nitrate	R	R	R	R		=	_ n	=	R	+=-	R	R	R	_	R	+=-
Nickel Sulfate	R	R	R	R	R	_	R	_	R	t <u> </u>	R	R	R	_	R	<u> </u>
Nitric Acid - 10%	R	R	R	R	NR	NR	NR	NR	NR	NR	NR	NR	R	LR	NR	NR
Nitric Acid - 30%	R	R	R	R	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	_
Nitric Acid - 50%	NR	NR	LR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Nitric Acid - Fuming Nitrobenzene	NR R	NR LR	NR NR	NR LR	NR LR	NR —	NR LR	NR —	NR LR	NR NR	NR LR	NR LR	NR R	NR —	NR NR	NR
Nitroberizerie Nitrous Acid	LR	LR		_ Ln		+=-	_ LN		_ Ln	- IND	_ LN	_ LN	_ n	_		IND
Nut Oil	LR	LR	_		_	_	_	_	<u> </u>	<u> </u>	_	_	_	_	_	_
Nutmeg	NR	NR	R	R	_	_	_	_	_	_	_	_	_	_	_	-
Nitrous Oxide	R	_	_	_	_	_	_	_	_	_	_	_	_	_	R	_
Oleic Acid	R	LR	R	LR	R	_	R	_	R	R	R	NR	R	R	R	-
Olive Oil	R R	R —	R —	R —	_	_	_	_			R R	R R	_	_	_	<u> </u>
Orange Oil Oxalic Acid - 10%	R	R	R	R	NR	NR	NR	NR	LR	NR	R	LR	R	R	_	_
Oxalic Acid - 50%	R	R	R	R	NR	NR	NR	NR	_	_	_	_	_	_	NR	_
Oxygen (Atmoshperic	R	R	R	R	R	_	R	_	R	R	R	R	R	_	R	_
Pressure)																_
Ozone	LR	NR	LR	NR	NR	NR	NR	NR	NR	NR	R	_	LR	NR	R	_
Palm Nut Oil Palmitic Acid	R R	— В	R R	— В	_	_	_	_	— В		R R	R —	R	R	— В	
Peanut Oil	R	LR	R	R	_	Η=	_	_	_ R	-	R	R	_ R	_ R	_ K	 -
Peppermint Oil	R	NR	R	R	_	_	_	_	<u> </u>	<u> </u>	R	_	_	_	_	_
Perchloric Acid - 20%	R	R	R	R	NR	NR	NR	NR	_	_	NR	NR	_	_	NR	NR
Perchlorothylene	NR	NR	NR	NR	_	_	_	_	LR	NR	LR	NR	_	_	_	_
Peroxyacetic Acid	R	R			NR	NR	NR	NR	NR	NR	LR	NR	_	_	R	_
Phathalic Acid - 50% Phenol	R R	R R	R R	R R	– NR	– NR	– NR	– NR	NR	NR	– NR	– NR	– NR	– NR	– NR	_
Phenol - 5%	R	R	R	LR	NR	NR	NR	NR	LR	NR	NR	NR	NR	NR	NR	NR
Phosphoric Acid - 10%	R	R	R	R	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Phosphoric Acid - 30%	R	R	R	R	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Phosphoric Acid -	R	R	R	R	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
50% Phosphoric Acid -	R	R	R	LR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
85% Photographic	R	R	LR	LR	R	_	R	_	_	_	R	R	R	R	R	-
Solutions Pineapple Juice	R	R	R	R	_	_	_	_	_	_	_	_	_	_	_	_
Plating Solutions	R	R	R	R	_	_	_	_	_	_	_	_	_	_	NR	NR
Potassium Compounds	R	R	R	R	_	-	_	_	R	-	_	_	R	R	NR	-
Potassium Carbonate	R	R	R	R	R	_	R	_	_	_	R	R	_	_	R	_
Potassium Chlorate	R	R	R	R	_	_	_		_		R	LR	_	-	_	_
Potassium Chloride Potassium Hydroxide	R R	R R	R R	R R	R LR	R —	R LR	R —	R R	R —	R R	R R	R R	LR R	R R	_
Potassium lodine	R	_ _	R	R	LR	-	LK		_ R	Η	R	R	_ K	_ _	R	+
Potassium Iodide (3% Iodine)	R	R	R	R	_	_	_	_	_	_	_	_	_	_	NR	_
Potassium Permanganate	R	R	R	R	R	_	R	_	NR	NR	NR	NR	R	LR	NR	NR
Potassium Sulfate	R	R	R	R	R	R	R	R	_	-	R	R	_	_	R	_
Silicone	R	R	R	R	_	-	_	_	-	-	_	_	_	_	_	-
Silicone Oil	R	R	R	R	R	R	R	R	R	R	R	R	R	R	R	_
Silver Cyanide	R	R	- 1	- 1	_	_	_	_	- 1	_	_	-	_	_	-	_
Silver Nitrate	R	R	R	R	_	-	_ D	_ _	R		_	_	_ D	_ _	R	-
Sodium Compounds Sodium Acetate	R R	R R	R R	R R	R	R	R R	R R	LR —	_	R	R	R —	R —	R R	<u> </u>
Sodium Bicarbonate	R	R	R	R	R	R	R	R	=	=	R	R	_	LR	R	Η
Sodium Bisulfate	R	R	R	R	R	-	R	_	-	_	R	_	R	_	R	
Sodium BisulfIte	R	R	R	R	NR	NR	NR	NR	_	_	R	LR	R	LR	_	_
Sodium Borate	R	-	R	R	R	_	R	_	-		R	R	_	_	R	
Sodium Bromide Sodium Carbonate	R R	R R	R R	R R	R	R	— В	— В	LR R	-	— В	— В	R	LR	— В	_
Sodium Carbonate Sodium Chlorate	R	R	R	R	R	R	R	R	R	_	R	LR	_ K	LK —	R	-
												'				

CHEMICAL NAME Sodium Chloride Sodium Cyanide Sodium Fluoride Sodium Hydroxide Sodium Hydroxide - 10%	70 °F (21 °C)	140 °F (60	70	hylene	Acc	etal	HSEC	Acetal		esistant	Nylon	SEI M		me rdant	Hi-Ir	
Sodium Chloride Sodium Cyanide Sodium Fluoride Sodium Hydroxide Sodium Hydroxide -	°F (21 °C)	°F	-						Ny	lon	,	SELIVI	11010	erial		npact
Sodium Chloride Sodium Cyanide Sodium Fluoride Sodium Hydroxide Sodium Hydroxide -	(21 °C)	-		140	70	140	70	140	70	140	70	140	70	140	70	140
Sodium Cyanide Sodium Fluoride Sodium Hydroxide Sodium Hydroxide -	°C)	(60	°F	°F	°F	°F	°F	°F	°F	°F	°F	°F	°F	°F	°F	°F
Sodium Cyanide Sodium Fluoride Sodium Hydroxide Sodium Hydroxide -			(21	(60	(21	(60	(21	(60	(21	(60	(21	(60	(21	(60	(21	(60
Sodium Cyanide Sodium Fluoride Sodium Hydroxide Sodium Hydroxide -	R	°C)	°C)	°C)	°C)	°C)	°C)	°C)	°C)	°C)	°C)	°C)	°C)	°C)	°C)	°C)
Sodium Cyanide Sodium Fluoride Sodium Hydroxide Sodium Hydroxide -	R	Mat	terial Suit	ability Co	des: R = F	esistant	NR = No	ot Resista	nt LR =	Limited I	Resistant	— = N	o Availab	e Informa	tion	
Sodium Fluoride Sodium Hydroxide Sodium Hydroxide -		R	R	R	_	_	_	_	R	_	R	LR	R	_	R	T —
Sodium Hydroxide Sodium Hydroxide -	R	R	R	R	R	_	R	_	R	_	_	_	_	_	NR	NR
Sodium Hydroxide -	R	R	R	R					_	_	_	_	_	_	R	_
,	R	R	R	R	_	_	R	R	R	NR	NR	NR	LR	LR	LR	_
10%	R	R	R	R	R	R	R	R	LR	NR	R	R	R	_	R	_
		.,			.,	''	.,			1411	.,	.,				
Sodium Hydroxide - 50%	R	R	R	R	LR	_	LR	_	NR	NR	R	R	_	_	NR	_
Sodium Hypochlorite																
- (5% Cl)	R	LR	R	_	NR	NR	NR	NR	LR	NR	R	NR	LR	NR	R	l –
Sodium Hypochlorite																
- (12.5% Cl)	R	LR	LR	NR	NR	NR	NR	NR	NR	NR	-	NR	LR	NR	_	-
Sodium Nitrate	R	R	R	R	R	R	R	R	R	_	R	R	R	_	R	<u> </u>
Sodium Phosphate	R	_	R	R	R	_	R	_	_	_	R	R	_	_	_	_
Sodium Chlorite	R	LR	R	R	_	_	R	R	LR	NR	NR	NR	R	R	LR	_
Sodium Hydroxide	R	R	R	R	_	_	R	R	R	NR	NR	NR	LR	LR	LR	_
Sodium Hydroxide -					_	_										1
60%	R	R	R	R	R	R	R	R	R	NR	NR	NR	LR	LR	LR	_
Sodium Hypochlorite	R	LR	_	_	NR	NR	NR	NR	NR	_	LR	_	R	R	NR	_
Stannic Chloride	R	R	R	R	_	_	_	_	_	_	_	_	-	_	LR	-
Stannous Chloride	R	R	R	R	_	_	_	_	_	_	R	R	_	_	R	_
Starch	R	R	R	R	_	_	_	_	_	_	R	R	_	_	_	_
Starch Syrup	R	R	R	R	_	_	_	_	_	_	_	_	_	_	_	_
Stearic Acid	R	_	R	LR	R	_	R	_	R	_	R	NR	R-	_	R	_
Succinic Acid	R	R	R	R	_	_	ı	-	_	_	ı	_	_	_	_	_
Sucrose	R	R	R	R	_	_	_	_	_	_	_	_	_	_	_	_
Sugar	R	R	R	R	_	_	_	_	_	_	R	R	_	_	_	_
Sulfamic Acid - 20%	R	NR	_	_	_	_		_	_	_	_	_	_	_	_	_
Sulfate Liquors	R	R	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sulfur	R	R	R	R	R	_	R	_	R	_	R	_	_	_		
Sulfur Chloride	R R	R	— В	_ _		_			_ _	_ LD	— В	_ _	_ _	_	NR	NR
Sulfur Dioxide Sulfuric Acid - 3%	R	R	R	R R	NR LR	_	NR LR	_	R NR	LR NR	NR	R NR	R R	R	LR R	_
Sulfuric Acid - 5% Sulfuric Acid - 50%	R	R	R	R	NR	NR	NR	NR	NR	NR	NR	NR	R	_ R	_ R	 -
Sulfuric Acid - 30% Sulfuric Acid - 70%	R	LR	R	LR	NR	NR	NR	NR	NR	NR	NR	NR	_ _	_	_	Η
Sulfuric Acid - Fuming	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	LR	LR	_	+=-
Sulfurous Acid	R	LR	R	R	_	_	_	_	LR	_	_	-	R	_	R	
Tallow	R	R	R	R	R	_	R	_	_	_	_	_	R	_	_	 _ _
Tannic Acid - 10%	R	R	R	R	_	_	_	_	_	_	_	_	_	_	NR	NR
Tartaric Acid	R	R	R	R	R	_	R	_	R	LR	R	LR	R	_	R	-
Tetrahydrofuran	R	LR	NR	NR	LR	_	LR	_	R	_	R	NR	LR	NR	NR	NR
Toluene	R	NR	LR	NR	R	R	R	R	R	R	R	R	R	R	NR	NR
Tomato Juice	R	R	R	R	_	_	_	_	_	_	R	R	_	_	_	_
Transformer Oil	R	NR	R	LR	_	_	_	_	R	_	R	R	R	R	_	_
Tributyl Phosphate	R	LR	_	_	_	_	_	_	_	_	_	_	-	_	R	_
Trichloroacetic Acid	R	R	R	R	NR	NR	NR	NR	NR	NR	_	_	NR	NR	NR	NR
Trichloroethylene	R	NR	_	_	NR	NR	NR	NR	_	_	_	_	_	_	_	_
Tricresyl Phosphate	R	LR	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Trisodium Phosphate	R	R	R	R	_	_	_	_	_	_	_	_	_	_	R	_
Turpentine Oil	R	NR	LR	NR	R	_	R	_	R	_	R	LR	R	_	_	_
Urea	R	R	R	R	R	_	R	_	R	_	R	R	R	_	R	_
Varnish	R	_	R	R					_		_	_	_	_	_	_
Vaseline	R	R	LR	LR	R	_	R	_	R	_	R	R	R	_	_	_
Vegetable Oil		_	R	LR	R	_	R	_	_	_	_	_	R	R	-	_
Vinegar	R	R	R	R	R	_	R		_		R	LR	_ D	_	R	_
Wine	R	R	R	- ND	R	_ _	R	_ _	_ _	_ 	R	LR	R	- ND	- ND	- ND
Xylene Zina Compounda	NR R	NR	LR R	NR	R —	R —	R –	R —	R	R —	R LR	R —	LR R	NR R	NR	NR
Zinc Compounds Zinc Carbonate	R	R R	R	R R	_	_	_	_	LR —	_	LR —	_	H —	R _	LR —	_
Zinc Carbonate Zinc Chloride	R	R	R	R	R	_	R	_	NR	NR	R	R	R	_	R	+=-
Zinc Oxide	R	R	R	R	_ _	_	_ _	_			<u> </u>	_ _	n -	_	n —	+=
Zinc Oxide Zinc Sulfate	R	R	R	R	_	_	_	_	LR	=	R	R	R	_	R	+=-

Glossary

A

Accumulation tables

Conveyors that absorb temporary product overflow caused by fluctuations in downstream operations. Conveyors can be unidirectional or bi-directional.

Acetal

A thermoplastic that is strong, has a good balance of mechanical and chemical properties, and has good fatigue endurance and resilience. It has a low coefficient of friction. Temperature range is from-50°F (-45°C) to +200°F (93°C). THe specific gravity of acetal is approximately 1.40.

Adjusted belt pull

The belt pull adjusted for Service Factors.

Allowable belt strength

The rated belt strength adjusted for temperature and strength factors.

B

Barn door

Barn door is a flexible, angled, rod-retention feature molded into a module, directly behind the outermost module link. It bends when a rod is inserted, then blocks the rod hole opening in the module link to prevent the rod from backing out of the belt. The barn door is normally used with unheaded rods.

Belt pitch

center distance between hinge rods in an assembled belt.

Belt pull

The tensile load on a belt after the product loading, belt weight, conveyor length, total friction factor and elevation change is applied.

Bricklayed

Belt construction where plastic modules are staggered with those in adjacent rows.

C

Catenary sag

A belt or chain hanging under the influence of gravity between two (2) supports will assume the shape of a curve called a catenary.

Center-driven belts

Belts driven by the sprocket at a point midway between the hinge rods.

Chevron carryways

Support rails which are placed in an overlapping "V" pattern. This array supports the conveyor belt across the full width while distributing the wear more evenly. This pattern is very effective when moderate abrasion is present, providing a self cleaning method.

Chordal action

The pivoting action of the belt's modules about their hinge rods as the modules engage and disengage the sprocket. This results in a pulsation in the belt's speed, and a rise and fall in the belt's surface.

Coefficients of friction

A ratio of frictional force to contact force, which is determined experimentally. Coefficients of friction are usually stated for both dry and lubricated surfaces, and for start-up and running conditions.

D

Dead plate gap

Gap or clearance between the surface of a conveyor belt and any other surface onto which conveyed objects are to be transferred.

Deflection

Displacement or deformation due to loading.

E

Elevating conveyors

These conveyors have several types of variations and are employed when product elevation is necessary. Elevators almost always employ flights and sideguards, which present special consideration in the design.

Extra-wide sprockets

Available only in a Series 200, hinge-driven, diameter sprocket. Provides an extra-wide (double) driving area.

F

F.D.A.

Food and Drug Administration. Federal agency which regulates materials that may come in contact with food products.

Finger transfer plates

Comb-like plates that are employed with Intralox Raised Rib belts to minimize problems with product transfer and tipping.

Flat plate carryways

These are continuous sheets, usually of metal, over which the belt slides.

Flat top style

Modular plastic belt with a smooth, closed surface.

Flights

A vertical surface across the width of the belt. An integral part of the Intralox belt, employed when elevation of product is required (For example, on incline conveyors, elevator conveyors).

Fluid couplings

Fluid couplings allow a driven conveyor to accelerate gradually to operating speeds. Fluid couplings are recommended when frequent, high-speed starts and stops are necessary, or when conveyors are heavily loaded. They also serve as an overload safety.

Flush grid style

Modular plastic belt with an open, smooth grid.

Friction

The force which acts between two bodies at the surface of contact, so as to resist sliding on each other (see *Coefficients of friction*).

G

Gravity take-up

A gravity take-up usually consists of a roller resting on the belt in the returnway, with its weight providing the tension required to maintain proper sprocket engagement. A gravity take-up is most effective when placed near the drive shaft end of the returnway.

Н

H.D.P.E.

High-density polyethylene resin used in the manufacture of wearstrip. Employed, where abrasion is not a problem, to reduce friction between belt and the carryway surface.

Headed

Rod type with a larger diameter, rounded top; designed to fit securely behind a rod retention feature and prevent the rod from backing out of the belt. Headed rods are normally used with a snap-lock rod-retention feature.

Hinge rods

Plastic rods used in the assembly of modular plastic belts. They also serve as the hinges around which the belt modules rotate.

Hinge-driven belts

Belts driven at the hinges by the sprocket.

Horsepower

U.S. Units — The power delivered by a machine doing work at 550 foot pounds per second (ft-lb/sec), or 33,000 foot pounds per minute (ft-lb/min). The watt and kilowatt (kW) are power units used in rating electrical equipment. One kilowatt is equal to 1000 watts. One horsepower (HP) equals 746 watts or 0.746 kilowatts. One kilowatt is equal to 1.341 horsepower.

Metric Units — The power delivered by a machine doing work of 75 kilogram-meters per second (kg-m/sec), or 4500 kilogram-meters per minute (kg-m/min). One kilowatt is equal to 1.359 metric horsepower. One metric horsepower equals 736 watts or 0.736 kilowatts and closely approximates one U.S. horsepower, 746 watts.

Where calculations in this manual are done in metric units, power calculations are computed in watts. Wherever horsepower (HP) is used, it refers to the U.S. value.

ı

Idler rollers

Steel or plastic pipes supported by stub shafts used in place of idle shafts and sprockets. These pipe rollers can be considerably stiffer than a length of solid square shaft of comparable weight.

Inertia

The tendency of a body to remain at rest or to stay in motion, unless acted upon by an outside force.

Intermediate bearings

One or more additional bearings located near the center of a shaft to reduce shaft deflection to an acceptable level.

K

Knuckle chain

Narrow chain with relatively high strength that is commonly used in multiple strand applications. Knuckle chain typically handles boxes, totes, pans or other large products.

Knurled pin

Metal rod with a knurled end; designed to dig into and grip the module link; used with press fit rod-retention methods

L

Load-bearing rollers

Steel or plastic pipes supported by stub shafts which provide stiffness. Employed on center-drive accumulation conveyors on either side of the drive shaft.

M

Modular construction

Injection molded plastic modules assembled into an interlocked unit and joined by hinge rods.

Module pitch

The distance between the rod hole centerlines on a module.

Modules

Injection molded plastic parts used in the assembly of an Intralox belt.

Molybdenum-filled nylon (Nylatron)

A type of wearstrip plastic.

Moment of Inertia

A characteristic of the shape of an object which describes its resistance to bending or twisting.

Nylatron

(see Molybdenum-Filled Nylon).

Occluded edge

The occluded edge rod-retention feature is molded into a module directly behind the outermost module link. It is a rigid obstruction that a rod must flex around during rod insertion, as opposed to barn door rod retention, which moves aside to allow rod insertion. After rod insertion, the occluded edge retains the rod. Occluded edge is normally used with unheaded rods.

ONEPIECE live transfer belt

Modular plastic belt with an integral transfer edge for smooth, self-clearing, right angle transfers onto takeaway belts.

Open area

The percentage of area in the plane of the plastic belt that is unobstructed by plastic.

Open grid style

Modular plastic belt with low profile, transverse ribs.

Open hinge style

Modular plastic belt with exposed hinge rods and a flush surface.

Outside diameter

The distance from the top of a sprocket tooth to the top of the opposite tooth, measured through the centerline of the sprocket.

P

Parallel carryways

Metal or plastic belt support rails, placed on the conveyor frame parallel to the belt travel.

Perforated flat top style

Modular plastic belt with a smooth, perforated top.

Pitch

(see Belt Pitch or Module Pitch).

Pitch diameter

Diameter of a circle, which passes through the centerlines of hinge rods when the belt is wrapped around a sprocket.

Polvacetal

(see Acetal).

Polyethylene

A lightweight thermoplastic, buoyant in water, with a specific gravity of 0.95. It is characterized by superior fatigue resistance, flexibility and high-impact strength. Exhibits excellent performance at low temperatures, -100 °F (-73 °C). Upper continuous temperature limit is +150 °F (+66 °C).

Polypropylene

A thermoplastic material that provides good chemical resistance characteristics. Polypropylene is buoyant in water, with a specific gravity of approximately 0.90. It is suitable for continuous service in temperatures from +34 °F (+1 °C) to +220 °F (+104 °C).

Press fit

Rod-retention method used with knurled pins; force is used to push a knurled pin into a module link opening; friction between the module and the knurled portion of the pin holds the pin in place

Pull-pull bi-directional conveyors

There are three common variations of the Pull-pull type of reversing (bi-directional) conveyors: the center-Drive method, the Two-Motor drive method, and the Single-Motor/Slave-Drive method.

Pusher bars

A device used on bi-directional accumulation tables (i.e., in the bottling and canning industries) which allows the table to be filled to its capacity and assists in an orderly and complete discharge from the table back onto the conveying line.

Push-pull bi-directional conveyors

A conveyor employing one motor that will be reversing (bidirectional). The belt is being pulled in one direction and in the reversing direction the belt is being pushed.

R

Raised rib style

Modular plastic belt with a high profile, longitudinally ribbed surface.

Retainer rings

A shaft and sprocket accessory which restricts the lateral movement of the sprocket with respect to the shaft.

Returnways

The path the belt follows toward the idler shaft and sprockets.

Rods

See Hinge rods.

Roller carryways

Carryway surface that does not provide a continuous running surface. As the modules pass over the rollers, the chordal action can cause problems when product tipping is critical.

S

Screw take-up

These types of take-ups shift the position of one of the shafts, usually the idler, by using adjustable machine screws.

Scroll

Device used in place of the idle shaft and sprockets to prevent debris from accumulating on the inside of the conveyor belt. Scrolls are fabricated by welding steel left-hand pitch and right-hand pitch helical ribs to a common round shaft.

Second headed

Rod type where a "second" head is manually formed on the other end of a headed rod, after the rod is inserted through module links to form a belt hinge; the manually formed head prevents the rod from backing out of the belt

Service factors

Intralox classifies driven machines and power sources by severity factors. Severity factors reflect the type of service placed upon the power transmission components. High service factors are assigned to more severe applications, to ensure calculation of sufficient component strength to render an acceptable life expectancy for that component. Additional service factors can be required for continuous service applications requiring braking (for example, starts and stops) or reversing action (for example, bi-directional accumulation tables). Service factors help to ensure optimal service life of the components.

Shuttleplug

Spring-loaded rod-retention feature inserted behind an outermost module link. The Shuttleplug™ slides out of the way when a rod is inserted in the module link, then block the module link opening to prevent the rod from backing out. A Shuttleplug is normally used with unheaded rods.

Sideguards

Intralox belt accessory which forms a vertical wall near the belt edge and is an integral part of the belt.

Single-motor slave-drive

Employing one motor (reversible) using a roller chain, alternately driving either of two chain sprockets on the conveyor shaft. This drive system is usually limited to short conveyors because of the length of roller chain involved.

Slidelox

The Slidelox rod-retention feature is inserted behind an outermost module link, then manually opened to allow rod insertion in the link opening. Once inserted, the Slidelox is manually closed to prevent the rod from backing out of the belt. Slidelox is normally used with unheaded rods.

Snap-lock

Rod-retention feature consisting of a rim on the module edge that retains the head of a headed rod to prevent the rod from backing out of the belt

Soft starting motors

When rapid starts and stops of high speed and loaded conveyors occur, these devices are recommended. They allow the driven conveyor to accelerate gradually to operating speeds, which is beneficial for all conveyor components.

Specific gravity

A dimensionless ratio of the density of a substance to the density of water.

Static eletricity

An electrical charge build-up on a surface as a result of rolling or sliding contact with another surface.

Т

Take-up units

See Gravity take-up or Screw take-up.

Thermal expansion/contractions

With few exceptions, the dimensions of all substances increase as their temperature is increased and contract as their temperature is decreased. Plastics expand and contract rather significantly.

Torque

The capability or tendency of a force for producing torsion or rotation about an axis. For example, the twisting action on a turning shaft.

Two-motor drive design

In this design, the belt is alternately pulled in either direction (for example, bi-directional accumulation tables). Returnway belt tension is relatively low, requires rather expensive additional hardware (for example, an additional motor), slip clutches and electrical control components.

U

U.H.M.W.

Ultra High Molecular Weight, polyethylene resin used in the manufacture of wear-strip. It has very good wear characteristics, impact resistance and has an excellent combination of physical and mechanical.

Unheaded

Rod type that lacks a head on either end of the rod; normally used with barn door, Slidelox, and occluded edge rod-retention methods

U.S.D.A.-F.S.I.S.

United States Department of Agriculture. Federal agency which regulates equipment that may be employed in Meat, Dairy and Poultry facilities.

W

Wearstrips

Plastic strips that are added to a conveyor frame to increase the useful life of the frame and the conveyor belting. Also helpful in reducing sliding friction forces.

Index

Abrasion Resistance System: 426 Abrasion Resistant (AR) Nylon: 13, 20

Accumulation Tables: 423, 475 Acetal: 13, 14, 16, 19, 475, 477,

Acetal, Detectable: 13

Acetal, Electrically Conductive (EC): 14

Acetal Sprockets: 116, 283, 387, 395, 400, 406, 412

Acetal, X-Ray Detectable: 16 Adjusted Belt Pull (BP): 453, 475

Airflow: 448

Allowable Belt Strength: 24, 453, 475 Analysis for Radius and Spiral Belts: 9 Analysis for Straight Running Belts: 9

Angle Wearstrips: 433 Angled Roller, 0-Degree: 51 Angled Roller, 30-Degree: 52 Angled Roller, 90-Degree: 53

Angled Roller, 90-Degree (0.78-in Diameter): 54 Anti-Sag Carryway Wearstrip Configuration: 434

В

Back Tension: 435 Ball Belt: 55 Barn Door: 475

Basic Conveyor Frame Requirements: 430

Bearing Journals: 414 Belt Carryways: 433 Belt Construction: 5 Belt Edge Slider Return: 441

Belt Material Compliance: 19 Belt Material Properties: 17

Belt Materials Special Application: 13

Belt Pitch: 8, 475

Belt Pull (BP): 24, 453, 475 Belt Selection Instructions: 23 Belt Selection Process: 8 Belt Strength: 9, 24 Belt Surface Wear: 9 Belt System: 8

Belt Tension Load: 24

Bi-Directional Conveyor Sample Problem: 459

Bi-Directional Conveyors: 437

Bricklayed: 5, 475 Buckling belt rows: 434

Buildup Resistant Acetal Sprockets: 116

C

Calculated Belt Pull (BP): 453 Canning Plant Sample Problem: 459 Carryways: 433, 434

Carryways, Solid Plate: 433 Carryways Wearstrip: 423 Catenary Sag: 435, 439, 456, 475 Center-Driven Belts: 437, 475 Chemical Resistance: 434 Chevron Array: 433

Chevron Carryways: 475 Chordal Action: 10, 475 Clip-On Wearstrips: 433

Coefficient of Friction: 10, 452, 475

Cone Top: 86, 171

Cone Top, Open Hinge: 87

Cone Top, SeamFree Minimum Hinge: 106 Cone Top, SeamFree Open Hinge: 88 Contained Edge, Flush Grid: 220 Container Transfers, 90-Degree: 447

Control of Belt Length: 435

Conveyor Design, Friction Modules: 444

Conveyor Design: 444

Conveyors Bi-Directional Center Drive: 437

Conveyors Elevating: 439

CRFR: 13

Custom Wearstrips: 422

D

Dead Plate Gap: 33, 41, 66, 71, 102, 109, 117, 145, 162, 179, 193, 217, 223, 236, 240, 248, 252, 257, 263, 279, 284, 294, 300, 309, 316, 341, 349, 365, 378, 389, 397, 400, 408, 412, 475

Dead Plates: 424, 447 Deflection: 475

Design Requirements: 8 Detectable Acetal: 13 Detectable MX: 14 Detectable Nylon: 14

Detectable Polypropylene A22: 14 Diamond Friction Top: 131 Diamond Top, Embedded: 170, 209 Dimension Definitions: 430, 430

Dimensional Requirements for Finger Transfer Plate

Installation: 446

DirectDrive (DD), Spiral: 394, 403 DirectDrive (DD), Stacker: 399, 411 Double Wide Rim Sprocket: 39

Drive Guidelines: 431 Drive Method: 7, 8 Drive Shaft: 25

Drive Shaft Sprockets Spacing: 24 Drive Shaft Torque: 431, 454

INDEX

Dual Turning: 374, 384

Dynamic Effects Of High Speed Operation: 9

Ε

Easy Release: 211
Easy Release PLUS: 14

Easy Release Traceable Polypropylene: 14

Edge Bearings: 314, 328, 329

Edge Loss: 445

Electrically Conductive (EC) Acetal: 14 Elevating Conveyor Variations: 440 Elevating Conveyor with Shoe Return: 442

Elevating Conveyor with Wide Sideguards and Shoe

Return: 442

Elevating Conveyors: 439, 475

Elongation Due to Break-In and Wear: 435 Elongation Under Load (Strain): 435 Embedded Diamond Top: 170, 209 End-Off/End-On Transfers: 446 Enduralox Polypropylene: 15

Excess Belt: 456

Expansion Due to Water Absorption: 426, 449

Extended Pins: 347
Extended Tabs: 347
Extra-Wide Sprockets: 475
EZ Clean In Place System: 424
EZ Clean Sprockets: 423
EZ Mount Flex Tip Scraper: 427

EU-Compliant Belt Material: 19

EZ Track Glass Filled Nylon Split Sprockets: 175

F

FDA: 475

FDA-Compliant Material: 19 Finger Transfer Plates: 446, 475

Flame Retardant Thermoplastic Polyester (FR-TPES): 15

Flat Finger-Joint Wearstrips: 421, 433 Flat Friction Top: 151, 155, 157, 203

Flat Plate Carryways: 475

Flat Top: 46, 73, 126, 147, 152, 153, 156, 164, 182, 195,

253, 270, 287, 288, 352, 353 Flat Top Base Flights: 61

Flat Top Base Flights (No-Cling): 95, 284 Flat Top Base Flights Streamline: 141, 176, 215 Flat Top Base Flights Streamline Rubber: 142

Flat Top, Easy Release: 211 Flat Top, Easy Release PLUS: 210 Flat Top, Mold to Width: 127, 196 Flat Top, Mold to Width Open Hinge: 226

Flat Top Mold to Width Self Clearing Edge: 198 Flat Top, ONEPIECE Live Transfer: 128, 154, 197, 199

Flat Top, Open Hinge: 75, 225

Flat Top Perforated: 78, 129, 165 Flat Top, Perforated Round Hole: 79

Flat Top, ProTrax Sideflexing: 354, 355, 356, 357 Flat Top, SeamFree Minimum Hinge: 237

Flat Top, SeamFree Open Hinge: 76 Flat Top Sideflexing: 358, 359, 360

Flat Top Style: 476

Flat Top, Tight Transfer: 69

Flat Top, Tough: 77

Flat Top Wheel Chocks: 277, 292 Flat Top, ZERO TANGENT Radius: 297

Flight Material: 420

Flights: 476

Fluid Couplings: 433, 476

Flush Grid: 29, 36, 43, 80, 120, 135, 137, 163, 181, 200,

219, 241, 249, 269, 281, 351

Flush Grid Base Flight (Double No-Cling): 60

Flush Grid Base Flight (No-Cling): 96

Flush Grid Base Flights: 222 Flush Grid, Contained Edge: 220 Flush Grid Friction Top: 166

Flush Grid, Friction Top, No Indent: 167

Flush Grid, High Deck: 329, 331 Flush Grid, High Deck, Radius: 302

Flush Grid, High Deck with Edge Bearing: 305

Flush Grid, Mold to Width: 122, 172

Flush Grid, Nose-Roller Tight Turning: 313, 314

Flush Grid, Nub Top: 84, 169, 242

Flush Grid Nub Top Base Flights (Double No Cling): 141

Flush Grid Nub Top Base Flights (No Cling): 176 Flush Grid, ONEPIECE Live Transfer: 123, 168

Flush Grid Open: 121

Flush Grid Radius: 301, 319, 320, 321, 322, 324, 330, 332,

333, 334

Flush Grid, Radius with Insert Rollers: 325 Flush Grid Radius with Insert Rollers: 306

Flush Grid Style: 476

Food Handling Sample Problem: 458

Friction: 476
Friction Factors: 17
Friction Modules: 444
Friction Top Diamond: 131
Friction Top Flat: 134, 201
Friction Top Flush Grid: 166, 167

Friction Top, High Radius: 327 Friction Top Mold to Width Oval: 206

Friction Top Oval: 205 Friction Top Radius: 303, 323 Friction Top Radius Flush Grid: 332

Friction Top Rounded: 91

Friction Top Square: 132, 133, 202, 204 Friction Top Square Sideflexing: 361

G

General Application Sprocket Material: 19 General Notes on Elevating Conveyors: 440

Glass Filled Nylon: 20

Glass Filled Nylon Split Sprocket: 214

Glass Filled Nylon Split Sprockets: 161, 275, 338, 362 Glass Filled Nylon with Polypropylene Joining Plate: 20

Gravity Take-Up: 436, 476 GTech: 391, 392, 393

Н

HDPE: 476 Headed: 476

Heat Resistant (HR) Nylon: 15

Heat Resistant (HR) Nylon Split Sprockets: 59

Hi-Impact: 15 High Deck: 322

High Heat Resistant (HHR) Nylon: 15

High Radius, Friction Top: 327 Hinge-Driven Belts: 476 Hinge Rods: 5, 476, 478, Hold Down Rollers: 442

Hold Down Tabs: 61, 143, 188 Horsepower: 25, 455, 476

Ī

Idler Rollers: 476

Impact Resistant Flights: 97, 256

Impact Resistant Flights, Open Hinge: 97

Incline Conveyors: 440

Inertia: 476

Insert Nuts: 62, 189, 278, 292 Insert Rollers: 135, 148, 149, 150 Integral Friction Surface Modules: 444 Intermediate Bearings: 432, 432, 454, 476

J

Journal Bearing, Split: 426

K

Keyway: 414

Knuckle Chain: 345, 476 Knurled Pin: 476

i.

Lane Dividers: 377, 388, 396, 407

Large Slot Stainless Steel Link (SSL): 113

Lateral Tracking: 152, 203 Load-Bearing Rollers: 476

Load Sharing Edge: 330, 331, 332, 333, 334

M

Material, 3A Dairy Tested: 19 Material Compliance: 19 Material Contraction: 455 Material Detectable MX: 14 Material, EU-Compliant: 19

Material Expansion: 455 Material, FDA-Compliant: 19

Material, PK: 16 Material Selection: 8

Maximum Shaft Deflection: 454

Medium Slot: 111

Medium Slot Stainless Steel Link (SSL): 112 Mesh Nub Top Base Flights, (No-Cling): 234

Mesh Top: 81, 130, 229, 254, 346 Metal Abrasion Resistant: 39

Mini Rib: 82, 228

Minimum Hinge Flat Top Base Flights (Double No-

Cling): 239

Minimum Hinge Flat Top SeamFree: 105

Modular Construction: 476

Module Pitch: 476 Modules: 477

Mold to Width: 152, 156, 157, 288 Mold to Width Flat Friction Top: 203 Mold to Width Flat Top: 127, 196 Mold to Width Flush Grid: 122, 172 Mold to Width Friction Top, Square: 133 Mold to Width Open Hinge Flat Top: 226

Mold to Width Oval Friction Top: 206 Mold to Width Radius Flush Grid: 321

Mold to Width Radius Flush Grid with Load Sharing:

333, 334

Mold to Width Raised Rib: 125

Mold to Width Self Clearing Edge: 198 Mold To Width Square Friction Top: 204 Molybdenum-Filled Nylon (Nylatron): 477

Moment of Inertia: 25, 477

Ν

90-Degree Angled Roller: 53

90-Degree (0.78-in Diameter) Angled Roller: 54

No-Cling Flights: 339

Non Skid: 47, 158, 184, 208, 271, 289

Non Skid, Perforated: 290 Non Skid, Raised Rib: 185, 272

Nose-Roller: 313, 314 Nub Top: 83, 136, 137, 227

Nub Top Base Flights (Double No-Cling): 95

Nub Top, Flush Grid: 84, 242

Nub Top, Mesh: 230

Nub Top, SeamFree Open Hinge: 85

INDEX

intralox

Nylatron: 477 Nylon: 15

Nylon, Abrasion Resistant (AR): 13, 20

Nylon Detectable: 14

Nylon, Heat Resistant (HR): 15 Nylon, High Heat Resistant (HHR): 15 Nylon Split Sprockets: 276, 316

0

Occluded Edge: 477 ONEPIECE: 447

ONEPIECE Live Transfer Belt: 477

ONEPIECE Live Transfer Flat Top: 128, 154, 197, 199

ONEPIECE Live Transfer Flush Grid: 123, 168

Open Area: 477 Open Flush Grid: 121

Open Flush Grid Flush Edge Base Flights (No-Cling):

142

Open Grid: 35, 119, 231 Open Grid Style: 477 Open Hinge: 37, 45 Open Hinge Cone Top: 87 Open Hinge Flat Top: 75, 225

Open Hinge Flat Top Base Flights, (No-Cling): 234

Open Hinge Flight: 96 Open Hinge Style: 477 Outside Diameter: 477 Oval Friction Top: 205

Overlapping Sideguards: 377, 387, 395, 406

P

Parabolic Guide Rails: 447 Parallel Carryways: 477 Parallel Runners: 433 Perforated: 290

Perforated Flat Top: 78, 129, 165 Perforated Flat Top Round Hole: 79 Perforated Flat Top Style: 477

Pitch: 477

Pitch Diameter: 477

PK: 16

Polyacetal: 477

Polypropylene: 13, 20, 477 Polypropylene Composite: 15, 20 Polypropylene Detectable A22: 14 Polypropylene Easy Release Traceable: 14

Polypropylene Enduralox: 15

Polysulfone: 415 Polyurethane: 20

Polyurethane Composite: 20

Polyurethane Composite Split Sprockets: 20

Polyurethane, Ultra Abrasion Resistant: 21 Power Requirements: 25, 431, 432, 455

Press Fit: 477
Product Line: 11
Product Load: 24, 452
Product Transfer: 447

Product Transfer 90-Degree Container Transfers: 447

ProTrax: 212

ProTrax Sideflexing Flat Top: 357

ProTrax Sideflexing Flat Top with Tabs: 354, 355, 356

Pull-Pull Bi-Directional Conveyors: 437, 477 Push-Pull Bi-Directional Conveyors: 439, 477

Pusher Bars: 423, 477

PVDF: 16

R

Radius Conveyors: 444 Radius, Flush Grid: 320 Radius Flush Grid: 301

Radius, Flush Grid High Deck: 302 Radius, Friction Top: 303, 323 Radius, Raised Rib: 326

Radius, with Edge Bearing: 304, 328

Raised Open Grid: 231

Raised Rib: 30, 44, 89, 124, 158, 183, 259, 289

Raised Rib Mold to Width: 125 Raised Rib Non Skid: 185, 272 Raised Rib Radius: 326

Raised Rib Style: 477

Requirements, Basic Conveyor Frame: 430

Retainer Ring Selection: 415 Retainer Rings: 415, 417, 418, 477 Retainer Rings Round Shaft: 418 Retainer Rings Self-Set: 417 Retainer Rings Steel: 423 Retaining Sprockets: 432

Returnway, Required Tension: 435

Returnways: 478

Returnways, Standard: 435 Returnways and Take-Ups: 434

Ribbed Flights: 40 Rod Material: 9 Rods: 478

Roller Carryways: 478 Roller Returnways: 436 Roller Top: 48, 90, 207

Rollers as Idle Shafts and Sprocket Replacements: 433

Rollers, Hold Down: 423, 442 Round Hole Enhanced: 114 Rounded Friction Top: 91

Rounded Friction Top, Spiral: 373 Rounded Friction Top, Spiral GTech: 392

intralox

S

Sample Problem, Bi-Directional Conveyor: 459

Sample Problems: 457, 457, 458, 459

Screw Take-Up: 437, 478

Scroll: 478 Scroll Idlers: 420

SeamFree, Minimum Hinge Cone Top: 106 SeamFree Minimum Hinge Flat Top: 105, 237

SeamFree, Open Hinge Cone Top: 88 SeamFree, Open Hinge Flat Top: 76 SeamFree, Open Hinge Nub Top: 85

Second Headed: 478 Self Clearing Edge: 198

Self Extinguishing Low Moisture (SELM): 16

Self-Clearing Finger Transfer Plates: 64, 191, 216, 261

Series 1100 Flat Top Edge Loss: 445

Series 1100 Perforated Flat Top Edge Loss: 445

Service Conditions: 453 Service Factors: 24, 453, 478 Shaft Deflection: 454

Shaft, Dimensions: 414

Shaft, Maximum Allowable Torque: 10

Shaft, Sizes, and Materials: 431

Shaft, Square: 414 Shaft Strength: 10, 453 Shaft, Tolerances: 414

Shafts: 10, 10 Shuttleplug: 478 Side Drive: 385

Side Wheel Chocks: 292 Sideflexing: 358, 359, 360, 361

Sideguards: 478

Single-Motor and Slave-Drive Design: 439, 478

Slide Bed Returnways: 436

Slidelox: 478

Slip-Stick Effect: 449 Snap-Lock: 478

Snap-On Wearstrips: 433

Snub Roller: 435

Soft Starting Motors: 433, 478 Solid Plate Carryways: 433

Special Application Belt Materials: 13 Special Application Materials: 20, 21

Special Conveyors: 20, 437

Special Take-Up Arrangements: 436 Specific Added Belt Pull (BP): 448

Specific Gravity: 17, 478

Spiral 1.0: 369 Spiral 1.1: 370

Spiral 1.6: 371, 381, 391, 404

Spiral 2.0: 371

Spiral 2.2: 372, 382, 405

Spiral 2.5: 372 Spiral 2.7: 383 Spiral 3.2: 372

Spiral DirectDrive (DD): 394, 403

Spiral GTech 1.6: 391 Spiral GTech 2.2: 393 Spiral GTech 3.2: 393

Spiral GTech Rounded Friction Top: 392 Spiral Rounded Friction Top: 373

Split Sprockets: 426 Sprockets: 425

Sprockets EZ Clean: 423 Sprockets Float: 7

Sprockets Material Availability: 21

Sprockets Molded: 32, 38, 57, 93, 138, 159, 173, 221, 307,

335

Sprockets Polyurethane Composite Split: 20

Sprockets Requirements: 453 Sprockets Retaining: 432 Sprockets Spacing: 24, 453

Sprockets Split Metal: 32, 59, 139, 174, 187, 260, 282

Square Friction Top: 132, 133, 202

Square Shaft: 414 Stainless Steel: 21

Stainless Steel Backed UHMW Wearstrips: 422

Stainless Steel Link (SSL): 112, 113 Stainless Steel Link (SSL) Large Slot: 113 Stainless Steel Link (SSL) Medium Slot: 112

Stainless Steel Retaining Rings: 415 Standard Belt Materials: 13

Standard Flat Wearstrips: 421, 433
Standard Retainer Rings: 415
Standard Returnways: 435
Static Electricity: 11, 478

Steel Can Handling Sample Problem: 457 Streamline Flights: 39, 94, 108, 176, 246, 309 Streamline/No-Cling Flights: 32, 60, 61, 141 Support Wheel: 59, 376, 387, 395, 400, 406, 412

Surface Finishes: 414

Т

30-Degree Angled Roller: 52 3-Piece Streamline Flights: 251 3A Dairy Tested Material: 19 Take-Up, Gravity Style: 436 Take-Up, Screw Style: 437 Take-Up Units: 478 Temperature: 17

Temperature, Effects: 446 Temperature, Limits: 434 Temperature, Variations: 435

Tension Load: 452

INDEX

Thermal Expansion/Contraction: 434, 448, 455, 478

Thermoplastic: 15 Tight Transfer: 69, 444 Tight Turning: 313, 314

Tolerances: 414 Torque: 25, 478

Torque, Drive Shaft: 454

Tough Flat Top: 77

Traceable Polypropylene: 211

Tracking Tabs: 152, 212, 354, 355, 356

Transfer Design Guidelines: 446

Transfer Plates: 424

Transverse Roller Top (TRT): 49, 50, 243, 265 Two-Material Finger Transfer Plates: 63, 189, 260

Two-Motor Drive Design: 438, 478

U

UFVR: 16

UHMW Pressure Sensitive Tape: 422

Ultra Abrasion Resistant Polyurethane: 21

Ultra High Molecular Weight (UHMW): 422, 423, 479

Unheaded: 479 USDA-FSIS: 479 UV Resistant: 16

Vacuum Transfer Applications: 448 Variations of Elevating Conveyors: 441

W

Wearstrip Carryways: 433

Wearstrips: 11, 421, 421, 479

Wearstrips, Angle: 433

Wearstrips, Chevron Array: 433

Wearstrips, Clip-On: 433

Wearstrips Custom: 422

Wearstrips, Design Considerations: 434

Wearstrips, Flat Finger-Joint: 421, 433

Wearstrips, Installation: 434

Wearstrips, Parallel Runners: 433

Wearstrips, Snap-On: 433

Wearstrips, Stainless Steel Backed UHMW: 422

Wearstrips, Standard Flat: 421, 433 Wearstrips, Types and Sizes: 433

X

X-Ray Detectable Acetal: 16

Z

0-Degree Angled Roller: 51 ZERO TANGENT Radius: 297

CONTACT

Intralox, L.L.C. USA, New Orleans, LA, +504-733-0463, Toll Free: 1-800-535-8848

Intralox, L.L.C. Europe, Amsterdam, The Netherlands, +31 (0)20-540 36 00, Toll Free: 0800-4687-2569

Intralox Shanghai LTD., Shanghai, China, Toll Free: 400-842-3469

Global Assembly Center Locations: Japan • United Kingdom • Australia • Brazil • India

Country- and industry-specific toll-free phone numbers, and information on Intralox's global locations, available at www.intralox.com.